33 research outputs found

    Tight p-fusion frames

    Full text link
    Fusion frames enable signal decompositions into weighted linear subspace components. For positive integers p, we introduce p-fusion frames, a sharpening of the notion of fusion frames. Tight p-fusion frames are closely related to the classical notions of designs and cubature formulas in Grassmann spaces and are analyzed with methods from harmonic analysis in the Grassmannians. We define the p-fusion frame potential, derive bounds for its value, and discuss the connections to tight p-fusion frames

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    Mini-Workshop: Algebraic, Geometric, and Combinatorial Methods in Frame Theory

    Get PDF
    Frames are collections of vectors in a Hilbert space which have reconstruction properties similar to orthonormal bases and applications in areas such as signal and image processing, quantum information theory, quantization, compressed sensing, and phase retrieval. Further desirable properties of frames for robustness in these applications coincide with structures that have appeared independently in other areas of mathematics, such as special matroids, Gel’Fand-Zetlin polytopes, and combinatorial designs. Within the past few years, the desire to understand these structures has led to many new fruitful interactions between frame theory and fields in pure mathematics, such as algebraic and symplectic geometry, discrete geometry, algebraic combinatorics, combinatorial design theory, and algebraic number theory. These connections have led to the solutions of several open problems and are ripe for further exploration. The central goal of our mini-workshop was to attack open problems that were amenable to an interdisciplinary approach combining certain subfields of frame theory, geometry, and combinatorics
    corecore