56 research outputs found

    A soft multi-axial force sensor to assess tissue properties in RealTime

    Get PDF
    Objective: This work presents a method for the use of a soft multi-axis force sensor to determine tissue trauma in Minimally Invasive Surgery. Despite recent developments, there is a lack of effective haptic sensing technology employed in instruments for Minimally Invasive Surgery (MIS). There is thus a clear clinical need to increase the provision of haptic feedback and to perform real-time analysis of haptic data to inform the surgical operator. This paper establishes a methodology for the capture of real-time data through use of an inexpensive prototype grasper. Fabricated using soft silicone and 3D printing, the sensor is able to precisely detect compressive and shear forces applied to the grasper face. The sensor is based upon a magnetic soft tactile sensor, using variations in the local magnetic field to determine force. The performance of the sensing element is assessed and a linear response was observed, with a max hysteresis error of 4.1% of the maximum range of the sensor. To assess the potential of the sensor for surgical sensing, a simulated grasping study was conducted using ex vivo porcine tissue. Two previously established metrics for prediction of tissue trauma were obtained and compared from recorded data. The normalized stress rate (kPa.mm⁻¹) of compression and the normalized stress relaxation (ΔσR) were analyzed across repeated grasps. The sensor was able to obtain measures in agreement with previous research, demonstrating future potential for this approach. In summary this work demonstrates that inexpensive soft sensing systems can be used to instrument surgical tools and thus assess properties such as tissue health. This could help reduce surgical error and thus benefit patients

    Force measurement capability for robotic assisted minimally invasive surgery systems

    Full text link
    An automated laparoscopic instrument capable of non-invasive measurement of tip/tissue interaction forces for direct application in robotic assisted minimally invasive surgery systems_ is introduced in this paper. It has the capability to measure normal grasping forces as well as lateral interaction forces without any sensor mounted on the tip jaws. Further to non-invasive actuation of the tip, the proposed instrument is also able to change the grasping direction during surgical operation. Modular design of the instrument allows conversion between surgical modalities (e.g., grasping, cutting, and dissecting). The main focus of this paper is on evaluation of the grasping force capability of the proposed instrument. The mathematical formulation of fenestrated insert is presented and its non-linear behaviour is studied. In order to measure the stiffness of soft tissues, a device was developed that is also described in this paper. Tissue characterisation experiments were conducted and results are presented and analysed here. The experimental results verify the capability of the proposed instrument in accurately measuring grasping forces and in characterising artificial tissue samples of varying stiffness.<br /

    Force Sensing in Arthroscopic Instruments using Fiber Bragg Gratings

    Get PDF
    Minimally-invasive surgery has revolutionized many medical procedures; however, it also impedes the ability to feel the interaction between the surgical tool and the anatomical part being operated on. In order to address this problem, it is necessary to obtain accurate measurements of the interaction forces exerted on the surgical tools during surgery. These forces can then be manifested to the surgeon via a haptic device or presented visually (visual-force feedback). This thesis describes the use of a fiber optic device to measure and display to the surgeon interaction forces acting on an arthroscopic tool. The sensorization of the tool involves a simple, highly efficient and robust design and is ideally suited for use in a surgical training environment aimed at narrowing the gap between trainees and expert surgeons before the trainees proceed to their first surgery in vivo. The major advantages of using fiber optics include their small size, their local simplicity, their ease of sterilization, and their high sensitivity. In this thesis, a complete low-cost sensing solution is described, including 1) the use of fiber Bragg grating and long period grating sensors, 2) design of a low-cost optical interrogator, 3) high resolution electronic signal processing, and 4) fabrication of the tool using wire EDM, CNC, and 3D metal sintering technologies. The full design of an arthroscopic grasper is presented, along with the preliminary design and manufacturing of an arthroscopic probe and shaver. The designed low-cost system was compared with a commercially-available optical interrogator. The calibration and experimental results for this system are presented and discussed for accuracy and performance of the sensorized tool before and after an axial element was added for increased sensitivity. Sources of error and methods of improvement for the optical system, arthroscopic tool, and testing procedures are discussed to inform the design of future generations of these instruments

    Design and Development of a Lorentz Force-Based MRI-Driven Neuroendoscope

    Full text link
    The introduction of neuroendoscopy, microneurosurgery, neuronavigation, and intraoperative imaging for surgical operations has made significant improvements over other traditionally invasive surgical techniques. The integration of magnetic resonance imaging (MRI)-driven surgical devices with intraoperative imaging and endoscopy can enable further advancements in surgical treatments and outcomes. This work proposes the design and development of an MRI-driven endoscope leveraging the high (3-7 T), external magnetic field of an MR scanner for heat-mitigated steering within the ventricular system of the brain. It also demonstrates the effectiveness of a Lorentz force-based grasper for diseased tissue manipulation and ablation. Feasibility studies show the neuroendoscope can be steered precisely within the lateral ventricle to locate a tumor using both MRI and endoscopic guidance. Results also indicate grasping forces as high as 31 mN are possible and power inputs as low as 0.69 mW can cause cancerous tissue ablation. These findings enable further developments of steerable devices using MR imaging integrated with endoscopic guidance for improved outcomes

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Wireless Tissue Palpation for Intraoperative Detection of Lumps in the Soft Tissue

    Get PDF
    In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation probe (WPP) is a cylindrical device (15 mm in diameter, 60 mm in length) that can be deployed through a trocar incision and directly controlled by the surgeon to create a volumetric stiffness distribution map of the region of interest. This map can then be used to guide the tissue resection to minimize healthy tissue loss. The wireless operation prevents the need for a dedicated port and reduces the chance of instrument clashing in the operating field. The WPP is able to measure in real time the indentation pressure with a sensitivity of 34 Pa, the indentation depth with an accuracy of 0.68 mm, and the probe position with a maximum error of 11.3 mm in a tridimensional workspace. The WPP was assessed on the benchtop in detecting the local stiffness of two different silicone tissue simulators (elastic modulus ranging from 45 to 220 kPa), showing a maximum relative error below 5%. Then, in vivo trials were aimed to identify an agar-gel lump injected into a porcine liver and to assess the device usability within the frame of a laparoscopic procedure. The stiffness map created intraoperatively by the WPP was compared with a map generated ex vivo by a standard uniaxial material tester, showing less than 8% local stiffness error at the site of the lump

    Design of a Hand Held Minimally Invasive Lung Tumour Localization Device

    Get PDF
    Lung cancer is the leading type of cancer that causes death. If diagnosed, the treatment of choice is surgical resection of the tumour. Traditionally, a surgeon feels for the presence of a tumour in open thoracic surgery. However, a minimally invasive approach is desired. A major problem presented by the minimally invasive approach is the localization of the tumour. This project describes the design, analysis, and experimental validation of a novel minimally invasive instrument for lung tumour localization. The instrument end effector is a two degree of freedom lung tissue palpator. It allows for optimal tissue palpation to increase useful sensor feedback by ensuring sensor contact, and prevents tissue damage by uniformly distributing pressure on the tissue with an upper bound force. Finite element analysis was used extensively to guide the design process. The mechanism is actuated using high strength tungsten cables attached to controlled motors. Heat treatment experiments were undertaken with stainless steel alloy 440C for use in the design, achieving a device factor of safety of 4. This factor of safety is based on a 20 N force on the end effector — the approximate weight of a human lung. The design was prototyped and validation experiments were carried out to assess its articulation and its load carrying capacity. Up to 10 N of force was applied to the prototype. Issues to resolve in the current design include cable extension effects and the existence of joint inflection. The end effector was also designed to allow the inclusion of ultrasound, tactile, and kinaesthetic sensors. It is hypothesized that a plurality of sensors will increase the likelihood of positive tumour localization. These sensors, combined with the presented mechanical design, form the basis for research in robotics-assisted palpation. A proof of concept control system is presented for automated palpation

    Design of Novel Sensors and Instruments for Minimally Invasive Lung Tumour Localization via Palpation

    Get PDF
    Minimally Invasive Thoracoscopic Surgery (MITS) has become the treatment of choice for lung cancer. However, MITS prevents the surgeons from using manual palpation, thereby often making it challenging to reliably locate the tumours for resection. This thesis presents the design, analysis and validation of novel tactile sensors, a novel miniature force sensor, a robotic instrument, and a wireless hand-held instrument to address this limitation. The low-cost, disposable tactile sensors have been shown to easily detect a 5 mm tumour located 10 mm deep in soft tissue. The force sensor can measure six degrees of freedom forces and torques with temperature compensation using a single optical fiber. The robotic instrument is compatible with the da Vinci surgical robot and allows the use of tactile sensing, force sensing and ultrasound to localize the tumours. The wireless hand-held instrument allows the use of tactile sensing in procedures where a robot is not available

    A Novel Minimally Invasive Tumour Localization Device

    Get PDF
    Lung cancer is one of the leading causes of death, by cancer. The usual treatment is surgical resection of tumours. However, patients who are weak or have poor pulmonary function are deemed unfit for surgery. For these patients, a minimally-invasive approach is desired. A major problem associated with minimally-invasive approaches is tumour localization in real time and accurate measurement of tool--tissue forces. This thesis describes the design, analysis, manufacturing and validation of a minimally-invasive instrument for tumour localization, named Palpatron. The instrument has an end effector that is able to support two previously designed jaws, one containing an ultrasound sensor and the other a tactile sensor. The jaws can move with two degrees of freedom to palpate tissue and rotate about the central axis of the instrument. The Palpatron has uncoupled jaw motion that allows for optimal alignment of sensors to improve data acquisition. The instrument can be easily assembled and disassembled allowing it to be cleaned and sterilized. The mechanism is articulated using push rods, each actuated by a motor. A semi-automatic control system was created for palpation. It is composed of a microcontroller that controls four motors via serial communication. In addition, the Palpatron has the ability to prevent tissue damage by measuring tool--tissue forces. Finite element analysis was used to guide material selection for designed components. Grade 5 titanium was selected for end effector links to provide a factor of safety of 1.2 against yielding under a 10 N point load at the tip of a jaw. The design was fabricated and validated by conducting experiments to test articulation and load carrying capacity. An 8-N force was applied to the instrument, which was successfully supported. The semi-automatic control system was used to perform basic maneuvering tasks to verify jaw motion capabilities. With positive testing results, the Palpatron forms the next step towards a comprehensive robotic-assisted palpation technology

    Development of Sensing Systems for Improving Surgical Grasper Performance

    Get PDF
    Minimally invasive techniques play a vital and increasing role in modern surgery. In these procedures, surgical graspers are essential in replacing the surgeon’s fingertips as the main manipulator of delicate soft tissues. Current graspers lack haptic feedback, restricting the surgeon to visual feedback. Studies show that this can frequently lead to morbidity or task errors due to inappropriate application of force. Existing research has sought to address these concerns and improve the safety and performance of grasping through the provision of haptic feedback to the surgeon. However, an effective method of grasping task optimisation has not been found. This thesis explores new sensing approaches intended to reduce errors when manipulating soft tissues, and presents a novel tactile sensor designed for deployment in the grasper jaw. The requirements were first established through discussion with clinical partners and a literature review. This resulted in a conceptual approach to use multi-axis tactile sensing within the grasper jaw as a potential novel solution. As a foundation to the research, a study was conducted using instrumented graspers to investigate the characteristics of grasp force employed by surgeons of varying skill levels. The prevention of tissue slip was identified as a key method in the prevention of grasper misuse, preventing both abrasion through slip and crush damage. To detect this phenomena, a novel method was proposed based on an inductive pressure sensing system. To investigate the efficacy of this technique, experimental and computational modelling investigations were conducted. Computational models were used to better understand the transducer mechanisms, to optimise sensor geometry and to evaluate performance in slip detection. Prototype sensors were then fabricated and experimentally evaluated for their ultimate use in slip detection within a surgical grasper. The work concludes by considering future challenges to clinical translation and additional opportunities for this research in different domains
    corecore