693 research outputs found

    Grasping bulky objects with two anthropomorphic hands

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents an algorithm to compute precision grasps for bulky objects using two anthropomorphic hands. We use objects modeled as point clouds obtained from a sensor camera or from a CAD model. We then process the point clouds dividing them into two set of slices where we look for sets of triplets of points. Each triplet must accomplish some physical conditions based on the structure of the hands. Then, the triplets of points from each set of slices are evaluated to find a combination that satisfies the force closure condition (FC). Once one valid couple of triplets have been found the inverse kinematics of the system is computed in order to know if the corresponding points are reachable by the hands, if so, motion planning and a collision check are performed to asses if the final grasp configuration of the system is suitable. The paper inclu des some application examples of the proposed approachAccepted versio

    Characterisation of Grasp Quality Metrics

    Get PDF
    Robot grasp quality metrics are used to evaluate, compare and select robotic grasp configurations. Many of them have been proposed based on a diversity of underlying principles and to assess different aspects of the grasp configurations. As a consequence, some of them provide similar information but other can provide completely different assessments. Combinations of metrics have been proposed in order to provide global indexes, but these attempts have shown the difficulties of merging metrics with different numerical ranges and even physical units. All these studies have raised the need of a deeper knowledge in order to determine independent grasp quality metrics which enable a global assessment of a grasp, and a way to combine them. This paper presents an exhaustive study in order to provide numerical evidence for these issues. Ten quality metrics are used to evaluate a set of grasps planned by a simulator for 7 different robot hands over a set of 126 object models. Three statistical analysis, namely, variability, correlation and sensitivity, are performed over this extensive database. Results and graphs presented allow to set practical thresholds for each quality metric, select independent metrics, and determine the robustness of each metric,providing a reliability indicator under pose uncertainty. The results from this paper are intended to serve as guidance for practical use of quality metrics by researchers on grasp planning algorithms

    A New Approach for Grasp Quality Calculation using Continuous Boundary Formulation of Grasp Wrench Space

    Get PDF
    In this paper, we aim to use a continuous formulation to efficiently calculate the well-known wrench-based grasp metric proposed by Ferrari and Canny which is the minimum distance from the wrench space origin to the boundary of the grasp wrench space. Considering the L∞ role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.200000762939453px; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative; \u3e metric and the nonlinear friction cone model, the challenge of calculating this metric is to determine the boundary of the grasp wrench space. Instead of relying on convex hull construction, we propose to formulate the boundary of the grasp wrench space as continuous functions. By doing so, the problem of grasp quality calculation can be efficiently solved as typical least-square problems and it can be easily implemented by employing off-the-shelf optimization algorithms. Numerical tests will demonstrate the advantages of the proposed formulation compared to the conventional convex hull-based methods
    corecore