31 research outputs found

    A Stability-Estimator to Unify Humanoid Locomotion: Walking, Stair-Climbing and Ladder-Climbing

    Get PDF
    The field of Humanoid robotics research has often struggled to find a unique niche that is not better served by other forms of robot. Unlike more traditional industrials robots with a specific purpose, a humanoid robot is not necessarily optimized for any particular task, due to the complexity and balance issues of being bipedal. However, the versatility of a humanoid robot may be ideal for applications such as search and rescue. Disaster sites with chemical, biological, or radiation contamination mean that human rescue workers may face untenable risk. Using a humanoid robot in these dangerous circumstances could make emergency response faster and save human lives. Despite the many successes of existing mobile robots in search and rescue, stair and ladder climbing remains a challenging task due to their form. To execute ladder climbing motions effectively, a humanoid robot requires a reliable estimate of stability. Traditional methods such as Zero Moment Point are not applicable to vertical climbing, and do not account for force limits imposed on end-effectors. This dissertation implements a simple contact wrench space method using a linear combination of contact wrenches. Experiments in simulation showed ZMP equivalence on flat ground. Furthermore, the estimator was able to predict stability with four point contact on a vertical ladder. Finally, an extension of the presented method is proposed based on these findings to address the limitations of the linear combination.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201

    Design, control and implementation of CoCoA: a human-friendly autonomous service robot

    Get PDF
    The growing demand to automate everyday tasks combined with the rapid development of software technologies that can furnish service robots with a large repertoire of skills, are driving the need for design and implementation of human-friendly service robots, i.e., safe and dependable machines operating in the close vicinity of humans or directly interacting with them in social domains. The technological shift from classical industrial robots utilized in structured factory oors to service robots that are used in close collaboration with humans introduces many demanding challenges to ensure safety and autonomy of operation of such robots. In this thesis, we present mechanical design, modeling and software integration for motion/navigation planning, and human-collaborative control of a human-friendly service robot CoCoA: Cognitive Collaborative Assistant. CoCoA is designed to be bimanual with dual 7 degrees-of-freedom (DoF) anthropomorphic arms, featuring spherical wrists. Each arm weighs less than 1.6 kg and possesses a payload capacity of 1 kg. Bowden-cable based transmissions are used for the arms to enable grounding of motors and this arrangement results in lightweight arms with passive back-driveability. Thanks to passive back-driveability and low inertia of its arms, the operation of CoCoA is guaranteed to be safe not only during physical interactions, but also under collisions with the robot arms. The holonomic base of Co- CoA possesses four driven and steered wheel modules and is compatible with wheelchair accessible environments. CoCoA also features a single DoF torso, and dual one DoF grippers, resulting in a service robot with a total of 25 active DoF. The dynamic/kinematic/geometric models of CoCoA are derived in open source software. Inverse kinematics, stable grasp, kinematic reachability and inverse reachability databases are generated for the robot to enable computation of kinematically-feasible collision-free motion/grasp plans for its arms/grippers and navigation plans for its holonomic base, at interactive rates. For the real-time control of the robot, motion/navigation plans characterizing feasible joint trajectories are passed to feedback controllers dedicated to each joint. The joint space control of each joint is implemented in hardware, while communication/synchronization among di erent DoF is ensured through EtherCAT/RS-485 eldbuses running at high sampling rates. To comply with human movements under physical interactions and to enable human collaborative contour tracking tasks, CoCoA also implements passive velocity eld control that guarantees user safety by ensuring passivity of interaction with respect to externally applied forces. The feasibility of the design and the applicability of the overall planning and control framework are demonstrated through dynamic simulations and physical implementations of several service robotics scenarios

    Dexterous grasping under shape uncertainty

    Get PDF
    An important challenge in robotics is to achieve robust performance in object grasping and manipulation, dealing with noise and uncertainty. This paper presents an approach for addressing the performance of dexterous grasping under shape uncertainty. In our approach, the uncertainty in object shape is parameterized and incorporated as a constraint into grasp planning. The proposed approach is used to plan feasible hand con gurations for realizing planned contacts using different robotic hands. A compliant nger closing scheme is devised by exploiting both the object shape uncertainty and tactile sensing at ngertips. Experimental evaluation demonstrates that our method improves the performance of dexterous grasping under shape uncertainty

    기구학적 및 동적 제한조건들을 고려한 모바일 매니퓰레이터의 작업 중심 전신 동작 생성 전략

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 융합과학기술대학원 융합과학부(지능형융합시스템전공), 2023. 2. 박재흥.모바일 매니퓰레이터는 모바일 로봇에 장착된 매니퓰레이터입니다. 모바일 매니퓰레이터는 고정형 매니퓰레이터에 비해 모바일 로봇의 이동성을 제공받기 때문에 다양하고 복잡한 작업을 수행할 수 있습니다. 그러나 두 개의 서로 다른 시스템을 결합함으로써 모바일 매니퓰레이터의 전신을 계획하고 제어할 때 여러 특징을 고려해야 합니다. 이러한 특징들은 여자유도, 두 시스템의 관성 차이 및 모바일 로봇의 비홀로노믹 제한 조건 등이 있습니다. 본 논문의 목적은 기구학적 및 동적 제한조건들을 고려하여 모바일 매니퓰레이터의 전신 동작 생성 전략을 제안하는 것입니다. 먼저, 모바일 매니퓰레이터가 초기 위치에서 문을 통과하여 목표 위치에 도달하기 위한 전신 경로를 계산하는 프레임워크를 제안합니다. 이 프레임워크는 로봇과 문에 의해 생기는 기구학적 제한조건을 고려합니다. 제안하는 프레임워크는 두 단계를 거쳐 전신의 경로를 얻습니다. 첫 번째 단계에서는 그래프 탐색 알고리즘을 이용하여 모바일 로봇의 자세 경로와 문의 각도 경로를 계산합니다. 특히, 그래프 탐색에서 area indicator라는 정수 변수를 상태의 구성 요소로서 정의하는데, 이는 문에 대한 모바일 로봇의 상대적 위치를 나타냅니다. 두 번째 단계에서는 모바일 로봇의 경로와 문의 각도를 통해 문의 손잡이 위치를 계산하고 역기구학을 활용하여 매니퓰레이터의 관절 위치를 계산합니다. 제안된 프레임워크의 효율성은 비홀로노믹 모바일 매니퓰레이터를 사용한 시뮬레이션 및 실제 실험을 통해 검증되었습니다. 둘 째, 최적화 방법을 기반으로한 전신 제어기를 제안합니다. 이 방법은 등식 및 부등식 제한조건 모두에 대해 가중 행렬을 반영한 계층적 최적화 문제의 해를 계산합니다. 이 방법은 모바일 매니퓰레이터 또는 휴머노이드와 같이 자유도가 많은 로봇의 여자유도를 해결하기 위해 개발되어 작업 우선 순위에 따라 가중치가 다른 관절 동작으로 여러 작업을 수행할 수 있습니다. 제안된 방법은 가중 행렬을 최적화 문제의 1차 최적 조건을 만족하도록 하며, Active-set 방법을 활용하여 등식 및 부등식 작업을 처리합니다. 또한, 대칭적인 영공간 사영 행렬을 사용하여 계산상 효율적입니다. 결과적으로, 제안된 제어기를 활용하는 로봇은 우선 순위에 따라 개별적인 관절 가중치를 반영하여 전신 움직임을 효과적으로 보여줍니다. 제안된 제어기의 효용성은 모바일 매니퓰레이터와 휴머노이드를 이용한 실험을 통해 검증하였습니다. 마지막으로, 모바일 매니퓰레이터의 동적 제한조건들 중 하나로서 자가 충돌 회피 알고리즘을 제안합니다. 제안된 방법은 매니퓰레이터와 모바일 로봇 간의 자가 충돌에 중점을 둡니다. 모바일 로봇의 버퍼 영역을 둘러싸는 3차원 곡면인 distance buffer border의 개념을 정의합니다. 버퍼 영역의 두께는 버퍼 거리입니다. 매니퓰레이터와 모바일 로봇 사이의 거리가 버퍼 거리보다 작은 경우, 즉 매니퓰레이터가 모바일 로봇의 버퍼 영역 내부에 있는 경우 제안된 전략은 매니퓰레이터를 버퍼 영역 밖으로 내보내기 위해 모바일 로봇의 움직임을 생성합니다. 따라서 매니퓰레이터는 미리 정의된 매니퓰레이터의 움직임을 수정하지 않고도 모바일 로봇과의 자가 충돌을 피할 수 있습니다. 모바일 로봇의 움직임은 가상의 힘을 가함으로써 생성됩니다. 특히, 힘의 방향은 차동 구동 이동 로봇의 비홀로노믹 제약 및 조작기의 도달 가능성을 고려하여 결정됩니다. 제안된 알고리즘은 7자유도 로봇팔을 가진 차동 구동 모바일 로봇에 적용하여 다양한 실험 시나리오에서 입증되었습니다.A mobile manipulator is a manipulator mounted on a mobile robot. Compared to a fixed-base manipulator, the mobile manipulator can perform various and complex tasks because the mobility is offered by the mobile robot. However, combining two different systems causes several features to be considered when generating the whole-body motion of the mobile manipulator. The features include redundancy, inertia difference, and non-holonomic constraint. The purpose of this thesis is to propose the whole-body motion generation strategy of the mobile manipulator for considering kinematic and dynamic constraints. First, a planning framework is proposed that computes a path for the whole-body configuration of the mobile manipulator to navigate from the initial position, traverse through the door, and arrive at the target position. The framework handles the kinematic constraint imposed by the closed-chain between the robot and door. The proposed framework obtains the path of the whole-body configuration in two steps. First, the path for the pose of the mobile robot and the path for the door angle are computed by using the graph search algorithm. In graph search, an integer variable called area indicator is introduced as an element of state, which indicates where the robot is located relative to the door. Especially, the area indicator expresses a process of door traversal. In the second step, the configuration of the manipulator is computed by the inverse kinematics (IK) solver from the path of the mobile robot and door angle. The proposed framework has a distinct advantage over the existing methods that manually determine several parameters such as which direction to approach the door and the angle of the door required for passage. The effectiveness of the proposed framework was validated through experiments with a nonholonomic mobile manipulator. Second, a whole-body controller is presented based on the optimization method that can consider both equality and inequality constraints. The method computes the optimal solution of the weighted hierarchical optimization problem. The method is developed to resolve the redundancy of robots with a large number of Degrees of Freedom (DOFs), such as a mobile manipulator or a humanoid, so that they can execute multiple tasks with differently weighted joint motion for each task priority. The proposed method incorporates the weighting matrix into the first-order optimality condition of the optimization problem and leverages an active-set method to handle equality and inequality constraints. In addition, it is computationally efficient because the solution is calculated in a weighted joint space with symmetric null-space projection matrices for propagating recursively to a low priority task. Consequently, robots that utilize the proposed controller effectively show whole-body motions handling prioritized tasks with differently weighted joint spaces. The effectiveness of the proposed controller was validated through experiments with a nonholonomic mobile manipulator as well as a humanoid. Lastly, as one of dynamic constraints for the mobile manipulator, a reactive self-collision avoidance algorithm is developed. The proposed method mainly focuses on self-collision between a manipulator and the mobile robot. We introduce the concept of a distance buffer border (DBB), which is a 3D curved surface enclosing a buffer region of the mobile robot. The region has the thickness equal to buffer distance. When the distance between the manipulator and mobile robot is less than the buffer distance, i.e. the manipulator lies inside the buffer region of the mobile robot, the proposed strategy is to move the mobile robot away from the manipulator in order for the manipulator to be placed outside the border of the region, the DBB. The strategy is achieved by exerting force on the mobile robot. Therefore, the manipulator can avoid self-collision with the mobile robot without modifying the predefined motion of the manipulator in a world Cartesian coordinate frame. In particular, the direction of the force is determined by considering the non-holonomic constraint of the differentially driven mobile robot. Additionally, the reachability of the manipulator is considered to arrive at a configuration in which the manipulator can be more maneuverable. To realize the desired force and resulting torque, an avoidance task is constructed by converting them into the accelerations of the mobile robot and smoothly inserted with a top priority into the controller. The proposed algorithm was implemented on a differentially driven mobile robot with a 7-DOFs robotic arm and its performance was demonstrated in various experimental scenarios.1 INTRODUCTION 1 1.1 Motivation 1 1.2 Contributions of thesis 2 1.3 Overview of thesis 3 2 WHOLE-BODY MOTION PLANNER : APPLICATION TO NAVIGATION INCLUDING DOOR TRAVERSAL 5 2.1 Background & related works 7 2.2 Proposed framework 9 2.2.1 Computing path for mobile robot and door angle - S1 10 2.2.1.1 State 10 2.2.1.2 Action 13 2.2.1.3 Cost 15 2.2.1.4 Search 18 2.2.2 Computing path for arm configuration - S2 20 2.3 Results 21 2.3.1 Application to pull and push-type door 21 2.3.2 Experiment in cluttered environment 22 2.3.3 Experiment with different robot platform 23 2.3.4 Comparison with separate planning by existing works 24 2.3.5 Experiment with real robot 29 2.4 Conclusion 29 3 WHOLE-BODY CONTROLLER : WEIGHTED HIERARCHICAL QUADRATIC PROGRAMMING 31 3.1 Related works 32 3.2 Problem statement 34 3.2.1 Pseudo-inverse with weighted least-squares norm for each task 35 3.2.2 Problem statement 37 3.3 WHQP with equality constraints 37 3.4 WHQP with inequality constraints 45 3.5 Experimental results 48 3.5.1 Simulation experiment with nonholonomic mobile manipulator 48 3.5.1.1 Scenario description 48 3.5.1.2 Task and weighting matrix description 49 3.5.1.3 Results 51 3.5.2 Real experiment with nonholonomic mobile manipulator 53 3.5.2.1 Scenario description 53 3.5.2.2 Task and weighting matrix description 53 3.5.2.3 Results 54 3.5.3 Real experiment with humanoid 55 3.5.3.1 Scenario description 55 3.5.3.2 Task and weighting matrix description 55 3.5.3.3 Results 57 3.6 Discussions and implementation details 57 3.6.1 Computation cost 57 3.6.2 Composite weighting matrix in same hierarchy 59 3.6.3 Nullity of WHQP 59 3.7 Conclusion 59 4 WHOLE-BODY CONSTRAINT : SELF-COLLISION AVOIDANCE 61 4.1 Background & related Works 64 4.2 Distance buffer border and its score computation 65 4.2.1 Identification of potentially colliding link pairs 66 4.2.2 Distance buffer border 67 4.2.3 Evaluation of distance buffer border 69 4.2.3.1 Singularity of the differentially driven mobile robot 69 4.2.3.2 Reachability of the manipulator 72 4.2.3.3 Score of the DBB 74 4.3 Self-collision avoidance algorithm 75 4.3.1 Generation of the acceleration for the mobile robot 76 4.3.2 Generation of the repulsive acceleration for the other link pair 82 4.3.3 Construction of an acceleration-based task for self-collision avoidance 83 4.3.4 Insertion of the task in HQP-based controller 83 4.4 Experimental results 86 4.4.1 System overview 87 4.4.2 Experimental results 87 4.4.2.1 Self-collision avoidance while tracking the predefined trajectory 87 4.4.2.2 Self-collision avoidance while manually guiding the end-effector 89 4.4.2.3 Extension to obstacle avoidance when opening the refrigerator 91 4.4.3 Discussion 94 4.5 Conclusion 95 5 CONCLUSIONS 97 Abstract (In Korean) 113 Acknowlegement 116박

    Learning of Generalized Manipulation Strategies in Service Robotics

    Get PDF
    This thesis makes a contribution to autonomous robotic manipulation. The core is a novel constraint-based representation of manipulation tasks suitable for flexible online motion planning. Interactive learning from natural human demonstrations is combined with parallelized optimization to enable efficient learning of complex manipulation tasks with limited training data. Prior planning results are encoded automatically into the model to reduce planning time and solve the correspondence problem

    Planning and estimation algorithms for human-like grasping

    Get PDF
    Mención Internacional en el título de doctorThe use of robots in human-like environments requires them to be able to sense and model unstructured scenarios. Thus, their success will depend on their versatility for interacting with the surroundings. This interaction often includes manipulation of objects for accomplishing common daily tasks. Therefore, robots need to sense, understand, plan and perform; and this has to be a continuous loop. This thesis presents a framework which covers most of the phases encountered in a common manipulation pipeline. First, it is shown how to use the Fast Marching Squared algorithm and a leader-followers strategy to control a formation of robots, simplifying a high dimensional path-planning problem. This approach is evaluated with simulations in complex environments in which the formation control technique is applied. Results are evaluated in terms of distance to obstacles (safety) and the needed deformation. Then, a framework to perform the grasping action is presented. The necessary techniques for environment modelling and grasp synthesis and path planning and control are presented. For the motion planning part, the formation concept from the previous chapter is recycled. This technique is applied to the planning and control of the movement of a complex hand-arm system. Tests using robot Manfred show the possibilities of the framework when performing in real scenarios. Finally, under the assumption that the grasping actions may not always result as it was previously planned, a Bayesian-based state-estimation process is introduced to estimate the final in-hand object pose after a grasping action is done, based on the measurements of proprioceptive and tactile sensors. This approach is evaluated in real experiments with Reex Takktile hand. Results show good performance in general terms, while suggest the need of a vision system for a more precise outcome.La investigación en robótica avanza con la intención de evolucionar hacia el uso de los robots en entornos humanos. A día de hoy, su uso está prácticamente limitado a las fábricas, donde trabajan en entornos controlados realizando tareas repetitivas. Sin embargo, estos robots son incapaces de reaccionar antes los más mínimos cambios en el entorno o en la tarea a realizar. En el grupo de investigación del Roboticslab se ha construido un manipulador móvil, llamado Manfred, en el transcurso de los últimos 15 años. Su objetivo es conseguir realizar tareas de navegación y manipulación en entornos diseñados para seres humanos. Para las tareas de manipulación y agarre, se ha adquirido recientemente una mano robótica diseñada en la universidad de Gifu, Japón. Sin embargo, al comienzo de esta tesis, no se había realzado ningún trabajo destinado a la manipulación o el agarre de objetos. Por lo tanto, existe una motivación clara para investigar en este campo y ampliar las capacidades del robot, aspectos tratados en esta tesis. La primera parte de la tesis muestra la aplicación de un sistema de control de formaciones de robots en 3 dimensiones. El sistema explicado utiliza un esquema de tipo líder-seguidores, y se basa en la utilización del algoritmo Fast Marching Square para el cálculo de la trayectoria del líder. Después, mientras el líder recorre el camino, la formación se va adaptando al entorno para evitar la colisión de los robots con los obstáculos. El esquema de deformación presentado se basa en la información sobre el entorno previamente calculada con Fast Marching Square. El algoritmo es probado a través de distintas simulaciones en escenarios complejos. Los resultados son analizados estudiando principalmente dos características: cantidad de deformación necesaria y seguridad de los caminos de los robots. Aunque los resultados son satisfactorios en ambos aspectos, es deseable que en un futuro se realicen simulaciones más realistas y, finalmente, se implemente el sistema en robots reales. El siguiente capítulo nace de la misma idea, el control de formaciones de robots. Este concepto es usado para modelar el sistema brazo-mano del robot Manfred. Al igual que en el caso de una formación de robots, el sistema al completo incluye un número muy elevado de grados de libertad que dificulta la planificación de trayectorias. Sin embargo, la adaptación del esquema de control de formaciones para el brazo-mano robótico nos permite reducir la complejidad a la hora de hacer la planificación de trayectorias. Al igual que antes, el sistema se basa en el uso de Fast Marching Square. Además, se ha construido un esquema completo que permite modelar el entorno, calcular posibles posiciones para el agarre, y planificar los movimientos para realizarlo. Todo ello ha sido implementado en el robot Manfred, realizando pruebas de agarre con objetos reales. Los resultados muestran el potencial del uso de este esquema de control, dejando lugar para mejoras, fundamentalmente en el apartado de la modelización de objetos y en el cálculo y elección de los posibles agarres. A continuación, se trata de cerrar el lazo de control en el agarre de objetos. Una vez un sistema robótico ha realizado los movimientos necesarios para obtener un agarre estable, la posición final del objeto dentro de la mano resulta, en la mayoría de las ocasiones, distinta de la que se había planificado. Este hecho es debido a la acumulación de fallos en los sistemas de percepción y modelado del entorno, y los de planificación y ejecución de movimientos. Por ello, se propone un sistema Bayesiano basado en un filtro de partículas que, teniendo en cuenta la posición de la palma y los dedos de la mano, los datos de sensores táctiles y la forma del objeto, estima la posición del objeto dentro de la mano. El sistema parte de una posición inicial conocida, y empieza a ejecutarse después del primer contacto entre los dedos y el objeto, de manera que sea capaz de detectar los movimientos que se producen al realizar la fuerza necesaria para estabilizar el agarre. Los resultados muestran la validez del método. Sin embargo, también queda claro que, usando únicamente la información táctil y de posición, hay grados de libertad que no se pueden determinar, por lo que, para el futuro, resultaría aconsejable la combinación de este sistema con otro basado en visión. Finalmente se incluyen 2 anexos que profundizan en la implementación de la solución del algoritmo de Fast Marching y la presentación de los sistemas robóticos reales que se han usado en las distintas pruebas de la tesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Raúl Suárez Feijoo.- Vocal: Pedro U. Lim

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles

    Distributed framework for a multi-purpose household robotic arm

    Get PDF
    Projecte final de carrera fet en col.laboració amb l'Institut de Robòtica i Informàtica IndustrialThe concept of household robotic servants has been in our mind for ages, and domestic appliances are far more robotised than they used to be. At present, manufacturers are starting to introduce small, household human-interactive robots to the market. Any human-interactive device has safety, endurability and simplicity constraints, which are especially strict when it comes to robots. Indeed, we are still far from a multi-purpose intelligent household robot, but human-interactive robots and arti cial intelligence research has evolved considerably, demonstration prototypes are a proof of what can be done. This project contributes to the research in humaninteractive robots, as the robotic arm and hand used are specially designed for human-interactive applications. The present study provides a distributed framework for an arm and a hand devices based on the robotics YARP protocol using the WAMTM arm and the BarrettHandTM as well as a basic modular client application complemented with vision. Firstly, two device drivers and a network interface are designed and implemented to control the WAMTM arm and the BarrettHandTM from the network. The drivers allow abstract access to each device, providing three ports: command requests port, state requests port and asynchronous replies port. Secondly, each driver is then encapsulated by YARP devices publishing realtime monitoring feedback and motion control to the network through what is called a Network wrapper. In particular, the network wrapper for the WAMTM arm and BarrettHandTM provides a state port, command port, Remote Procedure Call (RPC) port and an asynchronous noti cations port. The state port provides the WAMTM position and orientation feedback at 50 Hz, which represents a maximum blindness of one centimetre. This rst part of the project sets the foundations of a distributed, complete robot, whose design enables processing and power payload to be shared by di erent workstations. Moreover, users are able to work with the robot remotely over Ethernet and Wireless through a clear, understandable local interface within YARP. In addition to the distributed robotic framework provided, a client software framework with vision is also supplied. The client framework establishes a general software shell for further development and is organized in the basic, separate robotic branches: control, vision and plani cation. The vision module supports distributed image grabbing on mobile robotics, and shared-memory for xed, local vision. In order to incorporate environment interaction and robot autonomy with the planner, hand-eye transformation matrices have been obtained to perform object grasping and manipulation. The image processing is based on OpenCV libraries and provides object recognition with Scale Invariant Feature Transform (SIFT) features matching, Hough transform and polygon approximation algorithms. Grasping and path planning use pre-de ned grasps which take into account the size, shape and orientation of the target objects. The proof-of-concept applications feature a household robotic arm with the ability to tidy randomly distributed common kitchen objects to speci ed locations, with robot real-time monitoring and basic control. The device modularity introduced in this project philosophy of decoupling communication, device local access and the components, was successful. Thanks to the abstract access and decoupling, the demonstration applications provided were easily deployed to test the arm's performance and its remote control and monitorization. Moreover, both resultant frameworks are arm-independent and the design is currently being adopted by other projects' devices within the IRI
    corecore