365 research outputs found

    Exodex Adam—A Reconfigurable Dexterous Haptic User Interface for the Whole Hand

    Get PDF
    Applications for dexterous robot teleoperation and immersive virtual reality are growing. Haptic user input devices need to allow the user to intuitively command and seamlessly “feel” the environment they work in, whether virtual or a remote site through an avatar. We introduce the DLR Exodex Adam, a reconfigurable, dexterous, whole-hand haptic input device. The device comprises multiple modular, three degrees of freedom (3-DOF) robotic fingers, whose placement on the device can be adjusted to optimize manipulability for different user hand sizes. Additionally, the device is mounted on a 7-DOF robot arm to increase the user’s workspace. Exodex Adam uses a front-facing interface, with robotic fingers coupled to two of the user’s fingertips, the thumb, and two points on the palm. Including the palm, as opposed to only the fingertips as is common in existing devices, enables accurate tracking of the whole hand without additional sensors such as a data glove or motion capture. By providing “whole-hand” interaction with omnidirectional force-feedback at the attachment points, we enable the user to experience the environment with the complete hand instead of only the fingertips, thus realizing deeper immersion. Interaction using Exodex Adam can range from palpation of objects and surfaces to manipulation using both power and precision grasps, all while receiving haptic feedback. This article details the concept and design of the Exodex Adam, as well as use cases where it is deployed with different command modalities. These include mixed-media interaction in a virtual environment, gesture-based telemanipulation, and robotic hand–arm teleoperation using adaptive model-mediated teleoperation. Finally, we share the insights gained during our development process and use case deployments

    Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.

    Get PDF
    Grasp stability prediction of unknown objects is crucial to enable autonomous robotic manipulation in an unstructured environment. Even if prior information about the object is available, real-time local exploration might be necessary to mitigate object modelling inaccuracies. This paper presents an approach to predict safe grasps of unknown objects using depth vision and a dexterous robot hand equipped with tactile feedback. Our approach does not assume any prior knowledge about the objects. First, an object pose estimation is obtained from RGB-D sensing; then, the object is explored haptically to maximise a given grasp metric. We compare two probabilistic methods (i.e. standard and unscented Bayesian Optimisation) against random exploration (i.e. uniform grid search). Our experimental results demonstrate that these probabilistic methods can provide confident predictions after a limited number of exploratory observations, and that unscented Bayesian Optimisation can find safer grasps, taking into account the uncertainty in robot sensing and grasp execution

    Simultaneous Tactile Exploration and Grasp Refinement for Unknown Objects

    Full text link
    This paper addresses the problem of simultaneously exploring an unknown object to model its shape, using tactile sensors on robotic fingers, while also improving finger placement to optimise grasp stability. In many situations, a robot will have only a partial camera view of the near side of an observed object, for which the far side remains occluded. We show how an initial grasp attempt, based on an initial guess of the overall object shape, yields tactile glances of the far side of the object which enable the shape estimate and consequently the successive grasps to be improved. We propose a grasp exploration approach using a probabilistic representation of shape, based on Gaussian Process Implicit Surfaces. This representation enables initial partial vision data to be augmented with additional data from successive tactile glances. This is combined with a probabilistic estimate of grasp quality to refine grasp configurations. When choosing the next set of finger placements, a bi-objective optimisation method is used to mutually maximise grasp quality and improve shape representation during successive grasp attempts. Experimental results show that the proposed approach yields stable grasp configurations more efficiently than a baseline method, while also yielding improved shape estimate of the grasped object.Comment: IEEE Robotics and Automation Letters. Preprint Version. Accepted February, 202

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation

    Manipulation of unknown objects to improve the grasp quality using tactile information

    Get PDF
    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approachPeer ReviewedPostprint (published version

    Learning robot in-hand manipulation with tactile features

    Get PDF
    Dexterous manipulation enables repositioning of objects and tools within a robot’s hand. When applying dexterous manipulation to unknown objects, exact object models are not available. Instead of relying on models, compliance and tactile feedback can be exploited to adapt to unknown objects. However, compliant hands and tactile sensors add complexity and are themselves difficult to model. Hence, we propose acquiring in-hand manipulation skills through reinforcement learning, which does not require analytic dynamics or kinematics models. In this paper, we show that this approach successfully acquires a tactile manipulation skill using a passively compliant hand. Additionally, we show that the learned tactile skill generalizes to novel objects
    • …
    corecore