72 research outputs found

    Computational and Theoretical Aspects of \u3cem\u3eN\u3c/em\u3e-E.C. Graphs

    Get PDF
    We consider graphs with the n-existentially closed adjacency property. For a positive integer n, a graph is n-existentially closed (or n-e.c.) if for all disjoint sets of vertices A and B with \A∪ B\ = n (one of A or B can be empty), there is a vertex 2 not in A∪B joined to each vertex of A and no vertex of B. Although the n-e.c. property is straightforward to define, it is not obvious from the definition that graphs with the property exist. In 1963, Erdos and Rényi gave a non-explicit, randomized construction of such graphs. Until recently, only a few explicit families of n-e.c. graphs were known such as Paley graphs. Furthermore, n-e.c. graphs of minimum order have received much attention due to Erdos’ conjecture 011 the asymptotic order of these graphs. The exact minimum orders are only known for n = 1 and n = 2. We provide a survey of properties and examples of n-e.c. graphs. Using a computer search, a new example of a 3-e.c. graph of order 30 is presented. Previously, no known 3-e.c. graph was known to exist of that order. We give a new randomized construction of n-e.c. vertex-transitive graphs, exploiting Cayley graphs. The construction uses only elementary probability and group theory

    The modular product and existential closure II

    Get PDF

    Discontinuities, Generalized Solutions, and (Dis)agreement in Opinion Dynamics

    Get PDF
    This paper deals with continuous-time opinion dynamics that feature the interplay of continuous opinions and discrete behaviours. In our model, the opinion of one individual is only influenced by the behaviours of fellow individuals. The key technical difficulty in the study of these dynamics is that the right-hand sides of the equations are discontinuous and thus their solutions must be intended in some generalized sense: in our analysis, we consider both Carath'eodory and Krasovskii solutions. We first prove existence and completeness of Carath'e-o-dory solutions from every initial condition and we highlight a pathological behavior of Carath'eo-do-ry solutions, which can converge to points that are not (Carath'eodory) equilibria. Notably, such points can be arbitrarily far from consensus and indeed simulations show that convergence to non-consensus configurations is very common. In order to cope with these pathological attractors, we then study Krasovskii solutions. We give an estimate of the asymptotic distance of all Krasovskii solutions from consensus and we prove its tightness by an example of equilibrium such that this distance is quadratic in the number of agents. This fact implies that quantization can drastically destroy consensus. However, consensus is guaranteed in some special cases, namely when the communication among the individuals is described by either a complete or a complete bipartite graph

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization

    Get PDF
    Many real-life decision problems are discrete in nature. To solve such problems as mathematical optimization problems, integrality constraints are commonly incorporated in the model to reflect the choice of finitely many alternatives. At the same time, it is known that semidefinite programming is very suitable for obtaining strong relaxations of combinatorial optimization problems. In this dissertation, we study the interplay between semidefinite programming and integrality, where a special focus is put on the use of cutting-plane methods. Although the notions of integrality and cutting planes are well-studied in linear programming, integer semidefinite programs (ISDPs) are considered only recently. We show that manycombinatorial optimization problems can be modeled as ISDPs. Several theoretical concepts, such as the Chvátal-Gomory closure, total dual integrality and integer Lagrangian duality, are studied for the case of integer semidefinite programming. On the practical side, we introduce an improved branch-and-cut approach for ISDPs and a cutting-plane augmented Lagrangian method for solving semidefinite programs with a large number of cutting planes. Throughout the thesis, we apply our results to a wide range of combinatorial optimization problems, among which the quadratic cycle cover problem, the quadratic traveling salesman problem and the graph partition problem. Our approaches lead to novel, strong and efficient solution strategies for these problems, with the potential to be extended to other problem classes

    The Bernoulli numerators

    Get PDF
    • …
    corecore