8,296 research outputs found

    Extending a perfect matching to a Hamiltonian cycle

    Get PDF
    Graph TheoryInternational audienceRuskey and Savage conjectured that in the d-dimensional hypercube, every matching M can be extended to a Hamiltonian cycle. Fink verified this for every perfect matching M, remarkably even if M contains external edges. We prove that this property also holds for sparse spanning regular subgraphs of the cubes: for every d ≥7 and every k, where 7 ≤k ≤d, the d-dimensional hypercube contains a k-regular spanning subgraph such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle. We do not know if this result can be extended to k=4,5,6. It cannot be extended to k=3. Indeed, there are only three 3-regular graphs such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle, namely the complete graph on 4 vertices, the complete bipartite 3-regular graph on 6 vertices and the 3-cube on 8 vertices. Also, we do not know if there are graphs of girth at least 5 with this matching-extendability property

    Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

    Full text link
    A graph GG is {\em matching-decyclable} if it has a matching MM such that GMG-M is acyclic. Deciding whether GG is matching-decyclable is an NP-complete problem even if GG is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to O(n)O(n)-time recognition algorithms

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that uXiu\in X_{i}, vXjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k2k\geq 2. First we prove that n(G)kγ×k,t(GI)n(G)(k+1)1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of GeG-e or vv-components of GvG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Hamiltonicity in connected regular graphs

    Full text link
    In 1980, Jackson proved that every 2-connected kk-regular graph with at most 3k3k vertices is Hamiltonian. This result has been extended in several papers. In this note, we determine the minimum number of vertices in a connected kk-regular graph that is not Hamiltonian, and we also solve the analogous problem for Hamiltonian paths. Further, we characterize the smallest connected kk-regular graphs without a Hamiltonian cycle.Comment: 5 page

    Families of graph-different Hamilton paths

    Full text link
    Let D be an arbitrary subset of the natural numbers. For every n, let M(n;D) be the maximum of the cardinality of a set of Hamiltonian paths in the complete graph K_n such that the union of any two paths from the family contains a not necessarily induced cycle of some length from D. We determine or bound the asymptotics of M(n;D) in various special cases. This problem is closely related to that of the permutation capacity of graphs and constitutes a further extension of the problem area around Shannon capacity. We also discuss how to generalize our cycle-difference problems and present an example where cycles are replaced by 4-cliques. These problems are in a natural duality to those of graph intersection, initiated by Erd\"os, Simonovits and S\'os. The lack of kernel structure as a natural candidate for optimum makes our problems quite challenging
    corecore