53,261 research outputs found

    Saturation in the Hypercube and Bootstrap Percolation

    Full text link
    Let QdQ_d denote the hypercube of dimension dd. Given dmd\geq m, a spanning subgraph GG of QdQ_d is said to be (Qd,Qm)(Q_d,Q_m)-saturated if it does not contain QmQ_m as a subgraph but adding any edge of E(Qd)E(G)E(Q_d)\setminus E(G) creates a copy of QmQ_m in GG. Answering a question of Johnson and Pinto, we show that for every fixed m2m\geq2 the minimum number of edges in a (Qd,Qm)(Q_d,Q_m)-saturated graph is Θ(2d)\Theta(2^d). We also study weak saturation, which is a form of bootstrap percolation. A spanning subgraph of QdQ_d is said to be weakly (Qd,Qm)(Q_d,Q_m)-saturated if the edges of E(Qd)E(G)E(Q_d)\setminus E(G) can be added to GG one at a time so that each added edge creates a new copy of QmQ_m. Answering another question of Johnson and Pinto, we determine the minimum number of edges in a weakly (Qd,Qm)(Q_d,Q_m)-saturated graph for all dm1d\geq m\geq1. More generally, we determine the minimum number of edges in a subgraph of the dd-dimensional grid PkdP_k^d which is weakly saturated with respect to `axis aligned' copies of a smaller grid PrmP_r^m. We also study weak saturation of cycles in the grid.Comment: 21 pages, 2 figures. To appear in Combinatorics, Probability and Computin

    Instantons in the Saturation Environment

    Get PDF
    We show that instanton calculations in QCD become theoretically well defined in the gluon saturation environment which suppresses large size instantons. The effective cutoff scale is determined by the inverse of the saturation scale. We concentrate on two most important cases: the small-x tail of a gluon distribution of a high energy hadron or a large nucleus and the central rapidity region in a high energy hadronic or heavy ion collision. In the saturation regime the gluon density in a single large ultrarelativistic nucleus is high and gluonic fields are given by the classical solutions of the equations of motion. We show that these strong classical fields do not affect the density of instantons in the nuclear wave function compared to the instanton density in the vacuum. A classical solution with non-trivial topological charge is found for the gluon field of a single nucleus at the lowest order in the instanton perturbation theory. In the case of ultrarelativistic heavy ion collisions a strong classical gluonic field is produced in the central rapidity region. We demonstrate that this field introduces a suppression factor of exp{-c \rho^4 Q_s^4 / [8 \alpha^2 N_c (Q_s \tau)^2]} in the instanton size distribution, where Q_s is the saturation scale of both (identical) nuclei, \tau is the proper time and c = 1 is the gluon liberation coefficient. This factor suggests that gluonic saturation effects at the early stages of nuclear collisions regulate the instanton size distribution in the infrared region and make the instanton density finite by suppressing large size instantons.Comment: 20 pages, 8 figures, REVTeX, some discussion added including a possible scenario for unitarization of the soft pomero

    Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems

    Full text link
    We consider chains of random constraint satisfaction models that are spatially coupled across a finite window along the chain direction. We investigate their phase diagram at zero temperature using the survey propagation formalism and the interpolation method. We prove that the SAT-UNSAT phase transition threshold of an infinite chain is identical to the one of the individual standard model, and is therefore not affected by spatial coupling. We compute the survey propagation complexity using population dynamics as well as large degree approximations, and determine the survey propagation threshold. We find that a clustering phase survives coupling. However, as one increases the range of the coupling window, the survey propagation threshold increases and saturates towards the phase transition threshold. We also briefly discuss other aspects of the problem. Namely, the condensation threshold is not affected by coupling, but the dynamic threshold displays saturation towards the condensation one. All these features may provide a new avenue for obtaining better provable algorithmic lower bounds on phase transition thresholds of the individual standard model

    Sandwiching saturation number of fullerene graphs

    Full text link
    The saturation number of a graph GG is the cardinality of any smallest maximal matching of GG, and it is denoted by s(G)s(G). Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on nn vertices is essentially n/3n/3
    corecore