3,520 research outputs found

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    L-Visibility Drawings of IC-planar Graphs

    Full text link
    An IC-plane graph is a topological graph where every edge is crossed at most once and no two crossed edges share a vertex. We show that every IC-plane graph has a visibility drawing where every vertex is an L-shape, and every edge is either a horizontal or vertical segment. As a byproduct of our drawing technique, we prove that an IC-plane graph has a RAC drawing in quadratic area with at most two bends per edge

    On Visibility Representations of Non-planar Graphs

    Get PDF
    A rectangle visibility representation (RVR) of a graph consists of an assignment of axis-aligned rectangles to vertices such that for every edge there exists a horizontal or vertical line of sight between the rectangles assigned to its endpoints. Testing whether a graph has an RVR is known to be NP-hard. In this paper, we study the problem of finding an RVR under the assumption that an embedding in the plane of the input graph is fixed and we are looking for an RVR that reflects this embedding. We show that in this case the problem can be solved in polynomial time for general embedded graphs and in linear time for 1-plane graphs (i.e., embedded graphs having at most one crossing per edge). The linear time algorithm uses a precise list of forbidden configurations, which extends the set known for straight-line drawings of 1-plane graphs. These forbidden configurations can be tested for in linear time, and so in linear time we can test whether a 1-plane graph has an RVR and either compute such a representation or report a negative witness. Finally, we discuss some extensions of our study to the case when the embedding is not fixed but the RVR can have at most one crossing per edge

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Maximizing the Total Resolution of Graphs

    Full text link
    A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident to a common node (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we evaluate both by introducing the notion of "total resolution", that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a drawing is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution
    • …
    corecore