14,591 research outputs found

    Distance majorization sets in graphs

    Get PDF
    Let G = (V, E) be a simple graph. A subset D of V (G) is said to be a distance majorization set (or dm - set) if for every vertex u ∈ V − D, there exists a vertex v ∈ D such that d(u, v) ≥ deg(u) + deg(v). The minimum cardinality of a dm - set is called the distance majorization number of G (or dm - number of G) and is denoted by dm(G), Since the vertex set of G is a dm - set, the existence of a dm – set in any graph is guaranteed. In this paper, we find the dm - number of standard graphs like Kn, K1,n, Km,n, Cn, Pn, compute bounds on dm− number and dm- number of self complementary graphs and mycielskian of graphs.Publisher's Versio

    The Lie h-Invariant Conformal Field Theories and the Lie h-Invariant Graphs

    Full text link
    We use the Virasoro master equation to study the space of Lie h-invariant conformal field theories, which includes the standard rational conformal field theories as a small subspace. In a detailed example, we apply the general theory to characterize and study the Lie h-invariant graphs, which classify the Lie h-invariant conformal field theories of the diagonal ansatz on SO(n). The Lie characterization of these graphs is another aspect of the recently observed Lie group-theoretic structure of graph theory.Comment: 38p

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    Perfect (super) Edge-Magic Crowns

    Get PDF
    A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1,2,…,|V(G)|+|E(G)|} such that the sum f(x)+f(xy)+f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G))={1,2,…,|V(G)|} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are possible. In this paper we continue the study of the valences for (super) edge-magic labelings of crowns Cm¿K¯¯¯¯¯n and we prove that the crowns are perfect (super) edge-magic when m=pq where p and q are different odd primes. We also provide a lower bound for the number of different valences of Cm¿K¯¯¯¯¯n, in terms of the prime factors of m.Postprint (updated version
    • …
    corecore