2 research outputs found

    Logarithmic Weisfeiler--Leman and Treewidth

    Full text link
    In this paper, we show that the (3k+4)(3k+4)-dimensional Weisfeiler--Leman algorithm can identify graphs of treewidth kk in O(logn)O(\log n) rounds. This improves the result of Grohe & Verbitsky (ICALP 2006), who previously established the analogous result for (4k+3)(4k+3)-dimensional Weisfeiler--Leman. In light of the equivalence between Weisfeiler--Leman and the logic FO+C\textsf{FO} + \textsf{C} (Cai, F\"urer, & Immerman, Combinatorica 1992), we obtain an improvement in the descriptive complexity for graphs of treewidth kk. Precisely, if GG is a graph of treewidth kk, then there exists a (3k+5)(3k+5)-variable formula φ\varphi in FO+C\textsf{FO} + \textsf{C} with quantifier depth O(logn)O(\log n) that identifies GG up to isomorphism

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page
    corecore