13,012 research outputs found

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    2-factors with k cycles in Hamiltonian graphs

    Get PDF
    A well known generalisation of Dirac's theorem states that if a graph GG on n≥4kn\ge 4k vertices has minimum degree at least n/2n/2 then GG contains a 22-factor consisting of exactly kk cycles. This is easily seen to be tight in terms of the bound on the minimum degree. However, if one assumes in addition that GG is Hamiltonian it has been conjectured that the bound on the minimum degree may be relaxed. This was indeed shown to be true by S\'ark\"ozy. In subsequent papers, the minimum degree bound has been improved, most recently to (2/5+ε)n(2/5+\varepsilon)n by DeBiasio, Ferrara, and Morris. On the other hand no lower bounds close to this are known, and all papers on this topic ask whether the minimum degree needs to be linear. We answer this question, by showing that the required minimum degree for large Hamiltonian graphs to have a 22-factor consisting of a fixed number of cycles is sublinear in n.n.Comment: 13 pages, 6 picture

    Long path and cycle decompositions of even hypercubes

    Get PDF
    We consider edge decompositions of the nn-dimensional hypercube QnQ_n into isomorphic copies of a given graph HH. While a number of results are known about decomposing QnQ_n into graphs from various classes, the simplest cases of paths and cycles of a given length are far from being understood. A conjecture of Erde asserts that if nn is even, â„“<2n\ell < 2^n and â„“\ell divides the number of edges of QnQ_n, then the path of length â„“\ell decomposes QnQ_n. Tapadia et al.\ proved that any path of length 2mn2^mn, where 2m<n2^m<n, satisfying these conditions decomposes QnQ_n. Here, we make progress toward resolving Erde's conjecture by showing that cycles of certain lengths up to 2n+1/n2^{n+1}/n decompose QnQ_n. As a consequence, we show that QnQ_n can be decomposed into copies of any path of length at most 2n/n2^{n}/n dividing the number of edges of QnQ_n, thereby settling Erde's conjecture up to a linear factor

    Families of graph-different Hamilton paths

    Full text link
    Let D be an arbitrary subset of the natural numbers. For every n, let M(n;D) be the maximum of the cardinality of a set of Hamiltonian paths in the complete graph K_n such that the union of any two paths from the family contains a not necessarily induced cycle of some length from D. We determine or bound the asymptotics of M(n;D) in various special cases. This problem is closely related to that of the permutation capacity of graphs and constitutes a further extension of the problem area around Shannon capacity. We also discuss how to generalize our cycle-difference problems and present an example where cycles are replaced by 4-cliques. These problems are in a natural duality to those of graph intersection, initiated by Erd\"os, Simonovits and S\'os. The lack of kernel structure as a natural candidate for optimum makes our problems quite challenging
    • …
    corecore