21,166 research outputs found

    Graphs and Path Equilibria

    Get PDF
    The quest for optimal/stable paths in graphs has gained attention in a few practical or theoretical areas. To take part in this quest this chapter adopts an equilibrium-oriented approach that is abstract and general: it works with (quasi-arbitrary) arc-labelled digraphs, and it assumes very little about the structure of the sought paths and the definition of equilibrium, \textit{i.e.} optimality/stability. In this setting, this chapter presents a sufficient condition for equilibrium existence for every graph; it also presents a necessary condition for equilibrium existence for every graph. The necessary condition does not imply the sufficient condition a priori. However, the chapter pinpoints their logical difference and thus identifies what work remains to be done. Moreover, the necessary and the sufficient conditions coincide when the definition of optimality relates to a total order, which provides a full-equivalence property. These results are applied to network routing

    Efficient Local Search in Coordination Games on Graphs

    Get PDF
    We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. Prior work shows that the problem of determining the existence of a pure Nash equilibrium for these games is NP-complete already for graphs with all weights equal to one and no bonuses. However, for several classes of graphs (e.g. DAGs and cliques) pure Nash equilibria or even strong equilibria always exist and can be found by simply following a particular improvement or coalition-improvement path, respectively. In this paper we identify several natural classes of graphs for which a finite improvement or coalition-improvement path of polynomial length always exists, and, as a consequence, a Nash equilibrium or strong equilibrium in them can be found in polynomial time. We also argue that these results are optimal in the sense that in natural generalisations of these classes of graphs, a pure Nash equilibrium may not even exist.Comment: Extended version of a paper accepted to IJCAI1

    Networks of Complements

    Get PDF
    We consider a network of sellers, each selling a single product, where the graph structure represents pair-wise complementarities between products. We study how the network structure affects revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive and negative results, both of "Price of Anarchy" and of "Price of Stability" type, for special families of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these dynamics to prove the existence of approximately-efficient equilibria.Comment: An extended abstract will appear in ICALP 201

    The Price of Anarchy in Cooperative Network Creation Games

    Get PDF
    In general, the games are played on a host graph, where each node is a selfish independent agent (player) and each edge has a fixed link creation cost \alpha. Together the agents create a network (a subgraph of the host graph) while selfishly minimizing the link creation costs plus the sum of the distances to all other players (usage cost). In this paper, we pursue two important facets of the network creation game. First, we study extensively a natural version of the game, called the cooperative model, where nodes can collaborate and share the cost of creating any edge in the host graph. We prove the first nontrivial bounds in this model, establishing that the price of anarchy is polylogarithmic in n for all values of α in complete host graphs. This bound is the first result of this type for any version of the network creation game; most previous general upper bounds are polynomial in n. Interestingly, we also show that equilibrium graphs have polylogarithmic diameter for the most natural range of \alpha (at most n polylg n). Second, we study the impact of the natural assumption that the host graph is a general graph, not necessarily complete. This model is a simple example of nonuniform creation costs among the edges (effectively allowing weights of \alpha and \infty). We prove the first assemblage of upper and lower bounds for this context, stablishing nontrivial tight bounds for many ranges of \alpha, for both the unilateral and cooperative versions of network creation. In particular, we establish polynomial lower bounds for both versions and many ranges of \alpha, even for this simple nonuniform cost model, which sharply contrasts the conjectured constant bounds for these games in complete (uniform) graphs
    • …
    corecore