7,651 research outputs found

    BIPARTITE GRAPHS AND QUASIPOSITIVE SURFACES

    Get PDF
    We present a simple combinatorial model for quasipositive surfaces and positive braids, based on embedded bipartite graphs. As a first application, we extend the well-known duality on standard diagrams of torus links to twisted torus links. We then introduce a combinatorial notion of adjacency for bipartite graph links and discuss its potential relation with the adjacency problem for plane curve singularitie

    Arrow ribbon graphs

    Full text link
    We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification

    Knot invariants and the Bollobas-Riordan polynomial of embedded graphs

    Get PDF
    For a graph G embedded in an orientable surface \Sigma, we consider associated links L(G) in the thickened surface \Sigma \times I. We relate the HOMFLY polynomial of L(G) to the recently defined Bollobas-Riordan polynomial of a ribbon graph. This generalizes celebrated results of Jaeger and Traldi. We use knot theory to prove results about graph polynomials and, after discussing questions of equivalence of the polynomials, we go on to use our formulae to prove a duality relation for the Bollobas-Riordan polynomial. We then consider the specialization to the Jones polynomial and recent results of Chmutov and Pak to relate the Bollobas-Riordan polynomials of an embedded graph and its tensor product with a cycle.Comment: v2: minor corrections, to appear in European Journal of Combinatoric

    Separability and the genus of a partial dual

    Full text link
    Partial duality generalizes the fundamental concept of the geometric dual of an embedded graph. A partial dual is obtained by forming the geometric dual with respect to only a subset of edges. While geometric duality preserves the genus of an embedded graph, partial duality does not. Here we are interested in the problem of determining which edge sets of an embedded graph give rise to a partial dual of a given genus. This problem turns out to be intimately connected to the separability of the embedded graph. We determine how separability is related to the genus of a partial dual. We use this to characterize partial duals of graphs embedded in the plane, and in the real projective plane, in terms of a particular type of separation of an embedded graph. These characterizations are then used to determine a local move relating all partially dual graphs in the plane and in the real projective plane

    The multivariate signed Bollobas-Riordan polynomial

    Get PDF
    We generalise the signed Bollobas-Riordan polynomial of S. Chmutov and I. Pak [Moscow Math. J. 7 (2007), no. 3, 409-418] to a multivariate signed polynomial Z and study its properties. We prove the invariance of Z under the recently defined partial duality of S. Chmutov [J. Combinatorial Theory, Ser. B, 99 (3): 617-638, 2009] and show that the duality transformation of the multivariate Tutte polynomial is a direct consequence of it.Comment: 17 pages, 2 figures. Published version: a section added about the quasi-tree expansion of the multivariate Bollobas-Riordan polynomia
    • …
    corecore