286 research outputs found

    Stochastic Graphon Mean Field Games with Jumps and Approximate Nash Equilibria

    Full text link
    We study continuous stochastic games with inhomogeneous mean field interactions on large networks and explore their graphon limits. We consider a model with a continuum of players, where each player's dynamics involve not only mean field interactions but also individual jumps induced by a Poisson random measure. We examine the case of controlled dynamics, with control terms present in the drift, diffusion, and jump components. We introduce the graphon game model based on a graphon controlled stochastic differential equation (SDE) system with jumps, which can be regarded as the limiting case of a finite game's dynamic system as the number of players goes to infinity. Under some general assumptions, we establish the existence and uniqueness of Markovian graphon equilibria. We then provide convergence results on the state trajectories and their laws, transitioning from finite game systems to graphon systems. We also study approximate equilibria for finite games on large networks, using the graphon equilibrium as a benchmark. The rates of convergence are analyzed under various underlying graphon models and regularity assumptions.Comment: 37 page

    Linear Quadratic Graphon Field Games

    Full text link
    Linear quadratic graphon field games (LQ-GFGs) are defined to be LQ games which involve a large number of agents that are weakly coupled via a weighted undirected graph on which each node represents an agent. The links of the graph correspond to couplings between the agents' dynamics, as well as between the individual cost functions, which each agent attempts to minimize. We formulate limit LQ-GFG problems based on the assumption that these graphs lie in a sequence which converges to a limit graphon. First, under a finite-rank assumption on the limit graphon, the existence and uniqueness of solutions to the formulated limit LQ-GFG problem is established. Second, based upon the solutions to the limit LQ-GFG problem, epsilon-Nash equilibria are constructed for the corresponding game problems with a very large but finite number of players. This result is then generalized to the case with random initial conditions. It is to be noted that LQ-GFG problems are distinct from the class of graphon mean field game (GMFG) problems where a population is hypothesized to be associated with each node of the graph [Caines and Huang CDC 2018, 2019]

    Master equation of discrete time graphon mean field games and teams

    Full text link
    In this paper, we present a sequential decomposition algorithm equivalent of Master equation to compute GMFE of GMFG and graphon optimal Markovian policies (GOMPs) of graphon mean field teams (GMFTs). We consider a large population of players sequentially making strategic decisions where the actions of each player affect their neighbors which is captured in a graph, generated by a known graphon. Each player observes a private state and also a common information as a graphon mean-field population state which represents the empirical networked distribution of other players' types. We consider non-stationary population state dynamics and present a novel backward recursive algorithm to compute both GMFE and GOMP that depend on both, a player's private type, and the current (dynamic) population state determined through the graphon. Each step in computing GMFE consists of solving a fixed-point equation, while computing GOMP involves solving for an optimization problem. We provide conditions on model parameters for which there exists such a GMFE. Using this algorithm, we obtain the GMFE and GOMP for a specific security setup in cyber physical systems for different graphons that capture the interactions between the nodes in the system.Comment: 26 pages, 6 figures. arXiv admin note: text overlap with arXiv:1905.0415
    • …
    corecore