55 research outputs found

    Transferability of Graph Neural Networks using Graphon and Sampling Theories

    Full text link
    Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains. A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy. A recent method of capturing transferability of GNNs is through the use of graphons, which are symmetric, measurable functions representing the limit of large dense graphs. In this work, we contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture. We prove its ability to approximate bandlimited signals within a specified error tolerance using a minimal number of network weights. We then leverage this result, to establish the transferability of an explicit two-layer GNN over all sufficiently large graphs in a sequence converging to a graphon. Our work addresses transferability between both deterministic weighted graphs and simple random graphs and overcomes issues related to the curse of dimensionality that arise in other GNN results. The proposed WNN and GNN architectures offer practical solutions for handling graph data of varying sizes while maintaining performance guarantees without extensive retraining

    When to Pre-Train Graph Neural Networks? An Answer from Data Generation Perspective!

    Full text link
    Recently, graph pre-training has attracted wide research attention, which aims to learn transferable knowledge from unlabeled graph data so as to improve downstream performance. Despite these recent attempts, the negative transfer is a major issue when applying graph pre-trained models to downstream tasks. Existing works made great efforts on the issue of what to pre-train and how to pre-train by designing a number of graph pre-training and fine-tuning strategies. However, there are indeed cases where no matter how advanced the strategy is, the "pre-train and fine-tune" paradigm still cannot achieve clear benefits. This paper introduces a generic framework W2PGNN to answer the crucial question of when to pre-train (i.e., in what situations could we take advantage of graph pre-training) before performing effortful pre-training or fine-tuning. We start from a new perspective to explore the complex generative mechanisms from the pre-training data to downstream data. In particular, W2PGNN first fits the pre-training data into graphon bases, each element of graphon basis (i.e., a graphon) identifies a fundamental transferable pattern shared by a collection of pre-training graphs. All convex combinations of graphon bases give rise to a generator space, from which graphs generated form the solution space for those downstream data that can benefit from pre-training. In this manner, the feasibility of pre-training can be quantified as the generation probability of the downstream data from any generator in the generator space. W2PGNN provides three broad applications, including providing the application scope of graph pre-trained models, quantifying the feasibility of performing pre-training, and helping select pre-training data to enhance downstream performance. We give a theoretically sound solution for the first application and extensive empirical justifications for the latter two applications

    Training Graph Neural Networks on Growing Stochastic Graphs

    Full text link
    Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data. Based on matrix multiplications, convolutions incur in high computational costs leading to scalability limitations in practice. To overcome these limitations, proposed methods rely on training GNNs in smaller number of nodes, and then transferring the GNN to larger graphs. Even though these methods are able to bound the difference between the output of the GNN with different number of nodes, they do not provide guarantees against the optimal GNN on the very large graph. In this paper, we propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon. We propose to grow the size of the graph as we train, and we show that our proposed methodology -- learning by transference -- converges to a neighborhood of a first order stationary point on the graphon data. A numerical experiment validates our proposed approach

    Increase and Conquer: Training Graph Neural Networks on Growing Graphs

    Full text link
    Graph neural networks (GNNs) use graph convolutions to exploit network invariances and learn meaningful features from network data. However, on large-scale graphs convolutions incur in high computational cost, leading to scalability limitations. Leveraging the graphon -- the limit object of a graph -- in this paper we consider the problem of learning a graphon neural network (WNN) -- the limit object of a GNN -- by training GNNs on graphs sampled Bernoulli from the graphon. Under smoothness conditions, we show that: (i) the expected distance between the learning steps on the GNN and on the WNN decreases asymptotically with the size of the graph, and (ii) when training on a sequence of growing graphs, gradient descent follows the learning direction of the WNN. Inspired by these results, we propose a novel algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training. This algorithm is benchmarked on both a recommendation system and a decentralized control problem where it is shown to retain comparable performance, to its large-scale counterpart, at a reduced computational cost

    Generalized Graphon Process: Convergence of Graph Frequencies in Stretched Cut Distance

    Full text link
    Graphons have traditionally served as limit objects for dense graph sequences, with the cut distance serving as the metric for convergence. However, sparse graph sequences converge to the trivial graphon under the conventional definition of cut distance, which make this framework inadequate for many practical applications. In this paper, we utilize the concepts of generalized graphons and stretched cut distance to describe the convergence of sparse graph sequences. Specifically, we consider a random graph process generated from a generalized graphon. This random graph process converges to the generalized graphon in stretched cut distance. We use this random graph process to model the growing sparse graph, and prove the convergence of the adjacency matrices' eigenvalues. We supplement our findings with experimental validation. Our results indicate the possibility of transfer learning between sparse graphs

    Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs

    Full text link
    This paper studies the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold, thus encoding geometric information. We consider convolutional MNNs and GNNs where the manifold and the graph convolutions are respectively defined in terms of the Laplace-Beltrami operator and the graph Laplacian. Using the appropriate kernels, we analyze both dense and moderately sparse graphs. We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold. As a byproduct of this analysis, we observe an important trade-off between the discriminability of graph filters and their ability to approximate the desired behavior of manifold filters. We then discuss how this trade-off is ameliorated in neural networks due to the frequency mixing property of nonlinearities. We further derive a transferability corollary for geometric graphs sampled from the same manifold. We validate our results numerically on a navigation control problem and a point cloud classification task.Comment: 16 pages, 6 figures, 3 table
    • …
    corecore