564 research outputs found

    The Creation of an Expert System for Teaching Piano Lessons

    Get PDF
    Combining the arts with science and technology has had many beneficial results. Computers and music have been connected for many years. Computers have been used in music composition, electronic keyboards, music publishing and digital sound processing. Artificial intelligence has been used in creating expert systems for training people in various fields. An attempt will be made to tie together expert systems for training with current computerized music technology. This research report proposes that an expert system be developed to teach piano lessons. The fields of music and artificial intelligence will be drawn upon in developing this expert system structure. While existing technology makes the choice of an electronic keyboard the logical one, using an acoustic piano will also be addressed

    The Creation of an Expert System for Teaching Piano Lessons

    Get PDF
    Combining the arts with science and technology has had many beneficial results. Computers and music have been connected for many years. Computers have been used in music composition, electronic keyboards, music publishing and digital sound processing. Artificial intelligence has been used in creating expert systems for training people in various fields. An attempt will be made to tie together expert systems for training with current computerized music technology. This research report proposes that an expert system be developed to teach piano lessons. The fields of music and artificial intelligence will be drawn upon in developing this expert system structure. While existing technology makes the choice of an electronic keyboard the logical one, using an acoustic piano will also be addressed

    Mobile-Based Interactive Music for Public Spaces

    Get PDF
    With the emergence of modern mobile devices equipped with various types of built-in sensors, interactive art has become easily accessible to everyone, musicians and non-musicians alike. These efficient computers are able to analyze human activity, location, gesture, etc., and based on this information dynamically change, or create an artwork in realtime. This thesis presents an interactive mobile system that solely uses the standard embedded sensors available in current typical smart devices such as phones, and tablets to create an audio-only augmented reality for a singled out public space in order to explore the potential for social-musical interaction, without the need for any significant external infrastructure

    Multiple Media Interfaces for Music Therapy

    Get PDF
    This article describes interfaces (and the supporting technological infrastructure) to create audiovisual instruments for use in music therapy. In considering how the multidimensional nature of sound requires multidimensional input control, we propose a model to help designers manage the complex mapping between input devices and multiple media software. We also itemize a research agenda

    Interaction Design for Digital Musical Instruments

    Get PDF
    The thesis aims to elucidate the process of designing interactive systems for musical performance that combine software and hardware in an intuitive and elegant fashion. The original contribution to knowledge consists of: (1) a critical assessment of recent trends in digital musical instrument design, (2) a descriptive model of interaction design for the digital musician and (3) a highly customisable multi-touch performance system that was designed in accordance with the model. Digital musical instruments are composed of a separate control interface and a sound generation system that exchange information. When designing the way in which a digital musical instrument responds to the actions of a performer, we are creating a layer of interactive behaviour that is abstracted from the physical controls. Often, the structure of this layer depends heavily upon: 1. The accepted design conventions of the hardware in use 2. Established musical systems, acoustic or digital 3. The physical configuration of the hardware devices and the grouping of controls that such configuration suggests This thesis proposes an alternate way to approach the design of digital musical instrument behaviour – examining the implicit characteristics of its composite devices. When we separate the conversational ability of a particular sensor type from its hardware body, we can look in a new way at the actual communication tools at the heart of the device. We can subsequently combine these separate pieces using a series of generic interaction strategies in order to create rich interactive experiences that are not immediately obvious or directly inspired by the physical properties of the hardware. This research ultimately aims to enhance and clarify the existing toolkit of interaction design for the digital musician

    Soma: Live musical performance where congruent visual, auditory, and proprioceptive stimuli fuse to form a combined aesthetic narrative

    Get PDF
    Artists and scientists have long had an interest in the relationship between music and visual art, leading up to the present-day artform of correlated animation and music, “visual music.” Current live performance tools and paradigms for visual music however are subject to several limitations. The work detailed addresses these through a transdisciplinary integration of findings from several research areas, detailing the resulting ideas and their implementation in three interconnected software applications. This culminates in the art form of Soma, where correlated auditory, visual and proprioceptive stimuli form a combined narrative

    Development of an Augmented Reality musical instrument

    Get PDF
    Nowadays, Augmented Reality and Virtual Reality are concepts of which people are becoming more and more aware of due to their application to the video-game industry (speceially in the case of VR). Such raise is partly due to a decrease in costs of Head Mounted Displays, which are consequently becoming more and more accessible to the public and developers worldwide. All of these novelties, along with the frenetic development of Information Technologies applied to essentially, all markets; have also made digital artists and manufacturers aware of the never-ending interaction possibilities these paradigms provide and a variety of systems have appeared, which offer innovative creative capabilities. Due to the personal interest of the author in music and the technologies surrounding its creation by digital means, this document covers the application of the Virtuality- Reality-Continuum (VR and AR) paradigms to the field of interfaces for the musical expression. More precisely, it covers the development of an electronic drumset which integrates Arduino-compatible hardware with a 3D visualisation application (developed based on Unity) to create a complete functioning instrument musical instrument, The system presented along the document attempts to leverage three-dimensional visual feedback with tangible interaction based on hitting, which is directly translated to sound and visuals in the sound generation application. Furthermore, the present paper provides a notably deep study of multiple technologies and areas that are ultimately applied to the target system itself. Hardware concerns, time requirements, approaches to the creation of NIMEs (New Interfaces for Musical Expression), Virtual Musical Instrument (VMI) design, musical-data transmission protocols (MIDI and OSC) and 3D modelling constitute the fundamental topics discussed along the document. At the end of this paper, conclusions reflect on the difficulties found along the project, the unfulfilled objectives and all deviations from the initial concept that the project suffered during the development process. Besides, future work paths will be listed and depicted briefly and personal comments will be included as well as humble pieces of advice targeted at readers interested in facing an ambitious project on their own.En la actualidad, los conceptos de Realidad Aumentada (AR) y Realidad Virtual (VR) son cada vez más conocidos por la gente de a pie, debido en gran parte a su aplicación al ámbito de los videojuegos, donde el desarollo para dispositivos HMDs está en auge. Esta popularidad se debe en gran parte al abaratamiento de este tipo de dispositivos, los cuales son cada vez más accesibles al público y a los desarrolladores de todo el mundo. Todas estas novedades sumadas al frenético desarrollo de la industria de IT han llamado la atención de artistas y empresas que han visto en estos paradigmas (VR and AR) una oportunidad para proporcionar nuevas e ilimitadas formas de interacción y creación de arte en alguna de sus formas. Debido al interés personal del autor de este TFG en la música y las tecnologías que posiblitan la creación musical por medios digitales, este documento explora la aplicación de los paradigmas del Virtuality-Reality Continuum de Milgram (AR y VR) al ámbito de las interfaces para la creación musical. Concretamente, este TFG detalla el desarrollo de una batería electrónica, la cual combina una interfaz tangible creada con hardware compatible con Arduino con una aplicación de generación de sonidos y visualización, desarrollada utilizando Unity como base. Este sistema persigue lograr una interacción natural por parte del usuario por medio de integrar el hardware en unas baquetas, las cuales permiten detectar golpes a cualquier tipo de superficie y convierten estos en mensajes MIDI que son utilizados por el sistema generador de sonido para proporcionar feedback al usuario (tanto visual como auditivo); por tanto, este sistema se distingue por abogar por una interacción que permita golpear físicamente objetos (e.g. una cama), mientras que otros sistemas similates basan su modo de interacción en “air-drumming”. Además, este sistema busca solventar algunos de los inconvenientes principales asociados a los baterías y su normalmente conflictivo instrumento, como es el caso de las limitaciones de espacio, la falta de flexibilidad en cuanto a los sonidos que pueden ser generados y el elevado coste del equipo. Por otro lado, este documento pormenoriza diversos aspectos relacionados con el sistema descrito en cuestión, proporcionando al lector una completa panorámica de sistemas similares al propuesto. Asimismo, se describen los aspectos más importantes en relación al desarrollo del TFG, como es el caso de protocolos de transmisión de información musical (MIDI y OSC), algoritmos de control, guías de diseño para interfaces de creación musical (NIMEs) y modelado 3D. Se incluye un íntegro proceso de Ingeniería de Software para mantener la formalidad y tratar de garantizar un desarrollo más organizado y se discute la metodología utilizada para este proceso. Por último, este documento reflexiona sobre las dificultades encontradas, se enumeran posibilidades de Trabajo Futuro y se finaliza con algunas conclusiones personales derivadas de este trabajo de investigación.Ingeniería Informátic

    Towards the Design of a Natural User Interface for Performing and Learning Musical Gestures

    Get PDF
    AbstractA large variety of musical instruments, either acoustical or digital, are based on a keyboard scheme. Keyboard instruments can produce sounds through acoustic means but they are increasingly used to control digital sound synthesis processes with nowadays music. Interestingly, with all the different possibilities of sonic outcomes, the input remains a musical gesture. In this paper we present the conceptualization of a Natural User Interface (NUI), named the Intangible Musical Instrument (IMI), aiming to support both learning of expert musical gestures and performing music as a unified user experience. The IMI is designed to recognize metaphors of pianistic gestures, focusing on subtle uses of fingers and upper-body. Based on a typology of musical gestures, a gesture vocabulary has been created, hierarchized from basic to complex. These piano-like gestures are finally recognized and transformed into sounds

    Soma: live performance where congruent musical, visual, and proprioceptive stimuli fuse to form a combined aesthetic narrative

    Get PDF
    Artists and scientists have long had an interest in the relationship between music and visual art. Today, many occupy themselves with correlated animation and music, called 'visual music'. Established tools and paradigms for performing live visual music however, have several limitations: Virtually no user interface exists, with an expressivity comparable to live musical performance. Mappings between music and visuals are typically reduced to the music‘s beat and amplitude being statically associated to the visuals, disallowing close audiovisual congruence, tension and release, and suspended expectation in narratives. Collaborative performance, common in other live art, is mostly absent due to technical limitations. Preparing or improvising performances is complicated, often requiring software development. This thesis addresses these, through a transdisciplinary integration of findings from several research areas, detailing the resulting ideas, and their implementation in a novel system: Musical instruments are used as the primary control data source, accurately encoding all musical gestures of each performer. The advanced embodied knowledge musicians have of their instruments, allows increased expressivity, the full control data bandwidth allows high mapping complexity, while musicians‘ collaborative performance familiarity may translate to visual music performance. The conduct of Mutable Mapping, gradually creating, destroying and altering mappings, may allow for a narrative in mapping during performance. The art form of Soma, in which correlated auditory, visual and proprioceptive stimulus form a combined narrative, builds on knowledge that performers and audiences are more engaged in performance requiring advanced motor knowledge, and when congruent percepts across modalities coincide. Preparing and improvising is simplified, through re-adapting the Processing programming language for artists to behave as a plug-in API, thus encapsulating complexity in modules, which may be dynamically layered during performance. Design research methodology is employed during development and evaluation, while introducing the additional viewpoint of ethnography during evaluation, engaging musicians, audience and visuals performers

    Creation and performance of music structures

    Get PDF
    corecore