45 research outputs found

    A DEVELOPMENT OF A COMPUTER AIDED GRAPHIC USER INTERFACE POSTPROCESSOR FOR ROTOR BEARING SYSTEMS

    Get PDF
    Rotor dynamic analysis, which requires extensive amount of data and rigorous analytical processing, has been eased by the advent of powerful and affordable digital computers. By incorporating the processor and a graphical interface post processor in a single set up, this program offers a consistent and efficient approach to rotor dynamic analysis. The graphic user interface presented in this program effectively addresses the inherent complexities of rotor dynamic analyses by linking the required computational algorithms together to constitute a comprehensive program by which input data and the results are exchanged, analyzed and graphically plotted with minimal effort by the user. Just by selecting an input file and appropriate options as required, the user can carry out a comprehensive rotor dynamic analysis (synchronous response, stability analysis, critical speed analysis with undamped map) of a particular design and view the results with several options to save the plots for further verification. This approach helps the user to modify the design of turbomachinery quickly, until an efficient design is reached, with minimal compromise in all aspects

    An interactive interface for NCAR Graphics

    Get PDF
    The NCAR Graphics package has been a valuable research tool for over 20 years. As a low level Fortran library, however, it was difficult to use for nonprogramming researchers. With this grant and NSF support, an interactive interface has been created which greatly facilitates use of the package by researchers of diverse computer skill levels

    NASA Tech Briefs, January 1999

    Get PDF
    Topics include: special coverage sections on sensors and data acquisition and sections on electronic components and circuits, electronic software, materials, mechanics, bio-medical physical sciences, book and reports, and a special section of Photonics Tech Briefs

    Clique: Perceptually Based, Task Oriented Auditory Display for GUI Applications

    Get PDF
    Screen reading is the prevalent approach for presenting graphical desktop applications in audio. The primary function of a screen reader is to describe what the user encounters when interacting with a graphical user interface (GUI). This straightforward method allows people with visual impairments to hear exactly what is on the screen, but with significant usability problems in a multitasking environment. Screen reader users must infer the state of on-going tasks spanning multiple graphical windows from a single, serial stream of speech. In this dissertation, I explore a new approach to enabling auditory display of GUI programs. With this method, the display describes concurrent application tasks using a small set of simultaneous speech and sound streams. The user listens to and interacts solely with this display, never with the underlying graphical interfaces. Scripts support this level of adaption by mapping GUI components to task definitions. Evaluation of this approach shows improvements in user efficiency, satisfaction, and understanding with little development effort. To develop this method, I studied the literature on existing auditory displays, working user behavior, and theories of human auditory perception and processing. I then conducted a user study to observe problems encountered and techniques employed by users interacting with an ideal auditory display: another human being. Based on my findings, I designed and implemented a prototype auditory display, called Clique, along with scripts adapting seven GUI applications. I concluded my work by conducting a variety of evaluations on Clique. The results of these studies show the following benefits of Clique over the state of the art for users with visual impairments (1-5) and mobile sighted users (6): 1. Faster, accurate access to speech utterances through concurrent speech streams. 2. Better awareness of peripheral information via concurrent speech and sound streams. 3. Increased information bandwidth through concurrent streams. 4. More efficient information seeking enabled by ubiquitous tools for browsing and searching. 5. Greater accuracy in describing unfamiliar applications learned using a consistent, task-based user interface. 6. Faster completion of email tasks in a standard GUI after exposure to those tasks in audio

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering

    A survey on personal computer applications in industrial design process

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Industrial Design, Izmir, 1999Includes bibliographical references (leaves: 157-162)Text in English, Abstract: Turkish and Englishxii, 194 leavesIn this thesis, computer aided design systems are studied from the industrial designer's point of view. The study includes industrial design processes, computer aided design systems and the integration aspects.The technical issues are priorly studied, including current hardware and software technologies. The pure technical concepts are tried to be supported with real-world examples and graphics. Several important design software are examined, whether by personal practice or by literature research, depending on the availability of the software.Finally, the thesis include a case study, a 17" LCD computer monitor designed with a set of graphic programs including two-dimensional and three-dimensional packages.Keywords: Computers, industrial design methods, design software, computer aided design

    Composable system resources as an architecture for networked systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 169-173).(cont.) In this thesis, I describe an architecture for network devices that is based on using pluggable system resource modules that can be composed together to create a close-to-optimal platform for a particular application mix and device. Frequently used applications execute efficiently, while infrequently used applications execute less efficiently. Metrics for calculating efficiencies and selected application domains and mixes are specified by individuals as opposed to one-size-fits- all metrics specified by manufacturers. I show that such a composable system architecture is effective in optimizing system performance with respect to user preferences and application requirements, while the modularity of the architecture introduces little overhead. I also explore opportunities that arise from segmenting devices into UI and computational resource components, and show that an automated design environment can be created that greatly simplifies custom device design, reducing time-to-market and lowering costs.Network devices promise to provide a variety of user interfaces through which users can interact with network applications. The design of these devices stand in stark contrast to the design of personal computers in which new software content is accommodated by increased processor performance. Network device design, on the other hand, must take into consideration a variety of metrics including interactive performance, power consumption, battery life, transaction security, physical size and weight, and cost. Designing a general-purpose platform that caters to all of these metrics for all applications and devices is impractical. For an application mix, a processor architecture and platform can be designed that is optimized for a selected set of metrics, such as power consumption and battery life. Each of these optimized processor architectures and platforms will no doubt be applicable to a variety of devices. This suggests a modular system architecture for network devices that segments the computational resources from the device UI. Computational resources can be selected for a device UI that are optimized with respect to application mixes as well as to user preferences and metrics. Segmenting out the device UI reduces the complexity of device UIs, simplifying development and lowering costs. At the same time, with little electrical circuitry resident on device UIs, the selected platform can more fully optimize the entire device.by Sandeep Chatterjee.Ph.D
    corecore