11,798 research outputs found

    A belief function theory based approach to combining different representation of uncertainty in prognostics

    Get PDF
    International audienceIn this work, we consider two prognostic approaches for the prediction of the remaining useful life (RUL) of degrading equipment. The first approach is based on Gaussian Process Regression (GPR) and provides the probability distribution of the equipment RUL; the second approach adopts a Similarity-Based Regression (SBR) method for the RUL prediction and belief function theory for modeling the uncertainty on the prediction. The performance of the two approaches is comparable and we propose a method for combining their outcomes in an ensemble. The least commitment principle is adopted to transform the RUL probability density function supplied by the GPR method into a belief density function. Then, the Dempster's rule is used to aggregate the belief assignments provided by the GPR and the SBR approaches. The ensemble method is applied to the problem of predicting the RUL of filters used to clean the sea water entering the condenser of the boiling water reactor (BWR) in a Swedish nuclear power plant. The results by the ensemble method are shown to be more satisfactory than that provided by the individual GPR and SBR approaches from the point of view of the representation of the uncertainty in the RUL prediction

    Analyzing Learned Molecular Representations for Property Prediction

    Full text link
    Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors, and graph convolutional neural networks that construct a learned molecular representation by operating on the graph structure of the molecule. However, recent literature has yet to clearly determine which of these two methods is superior when generalizing to new chemical space. Furthermore, prior research has rarely examined these new models in industry research settings in comparison to existing employed models. In this paper, we benchmark models extensively on 19 public and 16 proprietary industrial datasets spanning a wide variety of chemical endpoints. In addition, we introduce a graph convolutional model that consistently matches or outperforms models using fixed molecular descriptors as well as previous graph neural architectures on both public and proprietary datasets. Our empirical findings indicate that while approaches based on these representations have yet to reach the level of experimental reproducibility, our proposed model nevertheless offers significant improvements over models currently used in industrial workflows
    • …
    corecore