59,635 research outputs found

    Music Maker – A Camera-based Music Making Tool for Physical Rehabilitation

    Full text link
    The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.National Science Foundation (IIS-0308213, IIS-039009, IIS-0093367, P200A01031, EIA-0202067 to M.B.); National Institutes of Health (DC-03663 to E.S.); Boston University (Dudley Allen Sargent Research Fund (to A.L.)

    Interpretation at the controller's edge: designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy)

    Get PDF
    This paper discusses the authors’ approach to designing an interface for the Gabii Project’s digital volumes that attempts to fuse elements of traditional synthetic publications and site reports with rich digital datasets. Archaeology, and classical archaeology in particular, has long engaged with questions of the formation and lived experience of towns and cities. Such studies might draw on evidence of local topography, the arrangement of the built environment, and the placement of architectural details, monuments and inscriptions (e.g. Johnson and Millett 2012). Fundamental to the continued development of these studies is the growing body of evidence emerging from new excavations. Digital techniques for recording evidence “on the ground,” notably SFM (structure from motion aka close range photogrammetry) for the creation of detailed 3D models and for scene-level modeling in 3D have advanced rapidly in recent years. These parallel developments have opened the door for approaches to the study of the creation and experience of urban space driven by a combination of scene-level reconstruction models (van Roode et al. 2012, Paliou et al. 2011, Paliou 2013) explicitly combined with detailed SFM or scanning based 3D models representing stratigraphic evidence. It is essential to understand the subtle but crucial impact of the design of the user interface on the interpretation of these models. In this paper we focus on the impact of design choices for the user interface, and make connections between design choices and the broader discourse in archaeological theory surrounding the practice of the creation and consumption of archaeological knowledge. As a case in point we take the prototype interface being developed within the Gabii Project for the publication of the Tincu House. In discussing our own evolving practices in engagement with the archaeological record created at Gabii, we highlight some of the challenges of undertaking theoretically-situated user interface design, and their implications for the publication and study of archaeological materials

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages

    Shape: A 3D Modeling Tool for Astrophysics

    Full text link
    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.Comment: 13 pages, 11 figures, accepted for publication in the "IEEE Transactions on Visualization and Computer Graphics

    Visual Information Retrieval in Digital Libraries

    Get PDF
    The emergence of information highways and multimedia computing has resulted in redefining the concept of libraries. It is widely believed that in the next few years, a significant portion of information in libraries will be in the form of multimedia electronic documents. Many approaches are being proposed for storing, retrieving, assimilating, harvesting, and prospecting information from these multimedia documents. Digital libraries are expected to allow users to access information independent of the locations and types of data sources and will provide a unified picture of information. In this paper, we discuss requirements of these emerging information systems and present query methods and data models for these systems. Finally, we briefly present a few examples of approaches that provide a preview of how things will be done in the digital libraries in the near future.published or submitted for publicatio
    corecore