3,603 research outputs found

    Three Dimensional Software Modelling

    Get PDF
    Traditionally, diagrams used in software systems modelling have been two dimensional (2D). This is probably because graphical notations, such as those used in object-oriented and structured systems modelling, draw upon the topological graph metaphor, which, at its basic form, receives little benefit from three dimensional (3D) rendering. This paper presents a series of 3D graphical notations demonstrating effective use of the third dimension in modelling. This is done by e.g., connecting several graphs together, or in using the Z co-ordinate to show special kinds of edges. Each notation combines several familiar 2D diagrams, which can be reproduced from 2D projections of the 3D model. 3D models are useful even in the absence of a powerful graphical workstation: even 2D stereoscopic projections can expose more information than a plain planar diagram

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Challenges in Learning Unified Modeling Language: From the Perspective of Diagrammatic Representation and Reasoning

    Get PDF
    Unified modeling language (UML) is widely taught in the information systems (IS) curriculum. To understand UML in IS education, this paper reports on an empirical study that taps into students’ learning of UML. The study uses a concept-mapping technique to identify the challenges in learning UML notational elements. It reveals that some technical properties of UML diagrammatic representation, coupled with students’ cognitive attributes, hinder both perceptual and conceptual processes involved in searching, recognizing, and inferring visual information, which creates learning barriers. This paper also discusses how to facilitate perceptual and conceptual processes in instruction to overcome learning challenges. The study provides valuable insights for the IS educators, the UML academic community, and practitioners

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    Integrating object-oriented modeling techniques with formal specification techniques

    Get PDF
    The increasing complexity of software systems makes their development complicated and error prone. A widely used and generally accepted technique in software engineering is the combination of different models (or views) for the description of software systems. The primary benefit of this approach is to model only related aspects (Iike structure or behavior). Using different models cIarifies different important aspects of the system, but it has to be taken into consideration that these models are not independent and they are semantically overlapping.\nThe models constitute the fundamental base of information upon which the problem domain experts, the analysts and the software developers interact. Thus, it is of a fundamental importance that it clearly and accurately expresses the essence of the problem. On the other hand, the model construction activity is a critical part in the development process.\nSince models are the result of a complex and creative activity, they tend to contain errors, omissions and inconsistencies. Model verification is very important, since errors in this stage have an expensive impact on the following stages of the software development process.Eje: Teorí

    A brief comparison of real-time software design methods

    Get PDF
    This paper briefly attempts to compare several mainstream methods/methodologies that are used for the analysis and design of real time systems. These are i) CORE, ii) YSM, iii) MASCOT, iv) CODARTS, v) HOOD, vi) ROOM, vii) UML, viii) UML-RT. Methods i-iii are use a data driven approach, whilst methods iv-vii use an object-oriented approach. All these methods have their advantages and disadvantages. Thus it is difficult to decide which method is best suited to a particular real-time design situation. Some methods like YSM, MASCOT and CODARTS are more oriented towards designing event driven systems and reactive behavior. Object oriented methods like the UML have many diagrams obtained from other methods. In the first part of the paper each method is briefly presented and its main features are explained. In the second part a score based ranking is used to try to identify which method has the best overall characteristics for real time development. The final results are presented in a tabular form and using a bar chart. In addition to this it is explained how each method fits in the SDLC. Both the score of each method and how it fits in the SDLC must be considered when selecting methods. To conclude some other issues are explained, because the selection of one method does not automatically imply that there will not be any problems.peer-reviewe

    Integrating object-oriented modeling techniques with formal specification techniques

    Get PDF
    The increasing complexity of software systems makes their development complicated and error prone. A widely used and generally accepted technique in software engineering is the combination of different models (or views) for the description of software systems. The primary benefit of this approach is to model only related aspects (Iike structure or behavior). Using different models cIarifies different important aspects of the system, but it has to be taken into consideration that these models are not independent and they are semantically overlapping. The models constitute the fundamental base of information upon which the problem domain experts, the analysts and the software developers interact. Thus, it is of a fundamental importance that it clearly and accurately expresses the essence of the problem. On the other hand, the model construction activity is a critical part in the development process. Since models are the result of a complex and creative activity, they tend to contain errors, omissions and inconsistencies. Model verification is very important, since errors in this stage have an expensive impact on the following stages of the software development process.Eje: TeoríaRed de Universidades con Carreras en Informática (RedUNCI
    corecore