105 research outputs found

    Graphical methods for inequality constraints in marginalized DAGs

    Full text link
    We present a graphical approach to deriving inequality constraints for directed acyclic graph (DAG) models, where some variables are unobserved. In particular we show that the observed distribution of a discrete model is always restricted if any two observed variables are neither adjacent in the graph, nor share a latent parent; this generalizes the well known instrumental inequality. The method also provides inequalities on interventional distributions, which can be used to bound causal effects. All these constraints are characterized in terms of a new graphical separation criterion, providing an easy and intuitive method for their derivation.Comment: A final version will appear in the proceedings of the 22nd Workshop on Machine Learning and Signal Processing, 201

    Graphs for margins of Bayesian networks

    Full text link
    Directed acyclic graph (DAG) models, also called Bayesian networks, impose conditional independence constraints on a multivariate probability distribution, and are widely used in probabilistic reasoning, machine learning and causal inference. If latent variables are included in such a model, then the set of possible marginal distributions over the remaining (observed) variables is generally complex, and not represented by any DAG. Larger classes of mixed graphical models, which use multiple edge types, have been introduced to overcome this; however, these classes do not represent all the models which can arise as margins of DAGs. In this paper we show that this is because ordinary mixed graphs are fundamentally insufficiently rich to capture the variety of marginal models. We introduce a new class of hyper-graphs, called mDAGs, and a latent projection operation to obtain an mDAG from the margin of a DAG. We show that each distinct marginal of a DAG model is represented by at least one mDAG, and provide graphical results towards characterizing when two such marginal models are the same. Finally we show that mDAGs correctly capture the marginal structure of causally-interpreted DAGs under interventions on the observed variables

    Distributional Equivalence and Structure Learning for Bow-free Acyclic Path Diagrams

    Full text link
    We consider the problem of structure learning for bow-free acyclic path diagrams (BAPs). BAPs can be viewed as a generalization of linear Gaussian DAG models that allow for certain hidden variables. We present a first method for this problem using a greedy score-based search algorithm. We also prove some necessary and some sufficient conditions for distributional equivalence of BAPs which are used in an algorithmic ap- proach to compute (nearly) equivalent model structures. This allows us to infer lower bounds of causal effects. We also present applications to real and simulated datasets using our publicly available R-package

    Nested Markov Properties for Acyclic Directed Mixed Graphs

    Full text link
    Directed acyclic graph (DAG) models may be characterized in at least four different ways: via a factorization, the d-separation criterion, the moralization criterion, and the local Markov property. As pointed out by Robins (1986, 1999), Verma and Pearl (1990), and Tian and Pearl (2002b), marginals of DAG models also imply equality constraints that are not conditional independences. The well-known `Verma constraint' is an example. Constraints of this type were used for testing edges (Shpitser et al., 2009), and an efficient marginalization scheme via variable elimination (Shpitser et al., 2011). We show that equality constraints like the `Verma constraint' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via Markov properties and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We show that marginal distributions of DAG models lie in this model, prove that a characterization of these constraints given in (Tian and Pearl, 2002b) gives an alternative definition of the model, and finally show that the fixing operation we used to define the model can be used to give a particularly simple characterization of identifiable causal effects in hidden variable graphical causal models.Comment: 67 pages (not including appendix and references), 8 figure

    On the causal interpretation of acyclic mixed graphs under multivariate normality

    Full text link
    In multivariate statistics, acyclic mixed graphs with directed and bidirected edges are widely used for compact representation of dependence structures that can arise in the presence of hidden (i.e., latent or unobserved) variables. Indeed, under multivariate normality, every mixed graph corresponds to a set of covariance matrices that contains as a full-dimensional subset the covariance matrices associated with a causally interpretable acyclic digraph. This digraph generally has some of its nodes corresponding to hidden variables. We seek to clarify for which mixed graphs there exists an acyclic digraph whose hidden variable model coincides with the mixed graph model. Restricting to the tractable setting of chain graphs and multivariate normality, we show that decomposability of the bidirected part of the chain graph is necessary and sufficient for equality between the mixed graph model and some hidden variable model given by an acyclic digraph

    Margins of discrete Bayesian networks

    Full text link
    Bayesian network models with latent variables are widely used in statistics and machine learning. In this paper we provide a complete algebraic characterization of Bayesian network models with latent variables when the observed variables are discrete and no assumption is made about the state-space of the latent variables. We show that it is algebraically equivalent to the so-called nested Markov model, meaning that the two are the same up to inequality constraints on the joint probabilities. In particular these two models have the same dimension. The nested Markov model is therefore the best possible description of the latent variable model that avoids consideration of inequalities, which are extremely complicated in general. A consequence of this is that the constraint finding algorithm of Tian and Pearl (UAI 2002, pp519-527) is complete for finding equality constraints. Latent variable models suffer from difficulties of unidentifiable parameters and non-regular asymptotics; in contrast the nested Markov model is fully identifiable, represents a curved exponential family of known dimension, and can easily be fitted using an explicit parameterization.Comment: 41 page

    Classifying Causal Structures: Ascertaining when Classical Correlations are Constrained by Inequalities

    Full text link
    The classical causal relations between a set of variables, some observed and some latent, can induce both equality constraints (typically conditional independences) as well as inequality constraints (Instrumental and Bell inequalities being prototypical examples) on their compatible distribution over the observed variables. Enumerating a causal structure's implied inequality constraints is generally far more difficult than enumerating its equalities. Furthermore, only inequality constraints ever admit violation by quantum correlations. For both those reasons, it is important to classify causal scenarios into those which impose inequality constraints versus those which do not. Here we develop methods for detecting such scenarios by appealing to d-separation, e-separation, and incompatible supports. Many (perhaps all?) scenarios with exclusively equality constraints can be detected via a condition articulated by Henson, Lal and Pusey (HLP). Considering all scenarios with up to 4 observed variables, which number in the thousands, we are able to resolve all but three causal scenarios, providing evidence that the HLP condition is, in fact, exhaustive.Comment: 37+12 pages, 13 figures, 4 table

    Markov equivalence of marginalized local independence graphs

    Full text link
    Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with mm-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with μ\mu-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. For statistical applications, it is pivotal to characterize graphs that induce the same independence relations as such a Markov equivalence class of graphs is the object that is ultimately identifiable from observational data. Our main result is that for directed mixed graphs with μ\mu-separation each Markov equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with edge markings. This graph encodes all the information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph.Comment: 49 pages (including supplementary material), updated to add examples and fix typo
    • …
    corecore