131 research outputs found

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul

    Influence maximization on social graphs: A survey

    Get PDF

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods

    A Survey on Influence Maximization: From an ML-Based Combinatorial Optimization

    Full text link
    Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.Comment: 45 page

    High Dimensional Learning with Structure Inducing Constraints and Regularizers

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2017. Major: Computer Science. Advisor: Arindam Banerjee. 1 computer file (PDF); ix, 127 pages.Explosive growth in data generation through science and technology calls for new computational and analytical tools. To the statistical machine learning community, one major challenge is the data sets with dimensions larger than the number of samples. Low sample-high dimension regime violates the core assumption of most traditional learning methods. To address this new challenge, over the past decade many high-dimensional learning algorithms have been developed. One of the significant high-dimensional problems in machine learning is the linear regression where the number of features is greater than the number of samples. In the beginning, the primary focus of high-dimensional linear regression literature was on estimating sparse coefficient through l1l_1-norm regularization. In a more general framework, one can assume that the underlying parameter has an intrinsic ``low dimensional complexity'' or \emph{structure}. Recently, researchers have looked at structures beyond sparsity that are induced by \emph{any norm} as the regularizer or constraint. In this thesis, we focus on two variants of the high-dimensional linear model, i.e., data sharing and errors-in-variables where the structure of the parameter is captured with a suitable norm. We introduce estimators for these models and study their theoretical properties. We characterize the sample complexity of our estimators and establish non-asymptotic high probability error bounds for them. Finally, we utilize dictionary learning and sparse coding to perform Twitter sentiment analysis as an application of high dimensional learning. Some discrete machine learning problems can also be posed as constrained set function optimization, where the constraints induce a structure over the solution set. In the second part of the thesis, we investigate a prominent set function optimization problem, the social influence maximization, under the novel ``heat conduction'' influence propagation model. We formulate the problem as a submodular maximization with cardinality constraints and provide an efficient algorithm for it. Through extensive experiments on several large real and synthetic networks, we show that our algorithm outperforms the well-studied methods from influence maximization literature
    • …
    corecore