4,106 research outputs found

    VisDB: Database Exploration

    Get PDF

    Supporting Data mining of large databases by visual feedback queries

    Get PDF
    In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database

    D4M 3.0: Extended Database and Language Capabilities

    Full text link
    The D4M tool was developed to address many of today's data needs. This tool is used by hundreds of researchers to perform complex analytics on unstructured data. Over the past few years, the D4M toolbox has evolved to support connectivity with a variety of new database engines, including SciDB. D4M-Graphulo provides the ability to do graph analytics in the Apache Accumulo database. Finally, an implementation using the Julia programming language is also now available. In this article, we describe some of our latest additions to the D4M toolbox and our upcoming D4M 3.0 release. We show through benchmarking and scaling results that we can achieve fast SciDB ingest using the D4M-SciDB connector, that using Graphulo can enable graph algorithms on scales that can be memory limited, and that the Julia implementation of D4M achieves comparable performance or exceeds that of the existing MATLAB(R) implementation.Comment: IEEE HPEC 201
    • …
    corecore