73,804 research outputs found

    Graphical potential games

    Get PDF
    We study the class of potential games that are also graphical games with respect to a given graph GG of connections between the players. We show that, up to strategic equivalence, this class of games can be identified with the set of Markov random fields on GG. From this characterization, and from the Hammersley-Clifford theorem, it follows that the potentials of such games can be decomposed to local potentials. We use this decomposition to strongly bound the number of strategy changes of a single player along a better response path. This result extends to generalized graphical potential games, which are played on infinite graphs.Comment: Accepted to the Journal of Economic Theor

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Full text link
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise beta describes the behavior of a complex system whose individual components act selfishly and keep responding according to some partial ("noisy") knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by the inverse of the parameter beta. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that, for potential games, the mixing time is upper and lower bounded by an exponential in the inverse of the noise and in the maximum potential difference. Instead, for games with dominant strategies, the mixing time cannot grow arbitrarily with the inverse of the noise. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, a class of games that have been previously studied in Physics and, more recently, in Computer Science in the context of diffusion of new technologies. We give evidence that the mixing time of the logit dynamics for these games strongly depends on the structure of the underlying graph. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in the inverse of noise. Moreover, we consider two specific and popular network topologies, the clique and the ring. For games played on a clique we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in the inverse of the noise and in the maximum potential difference, while for games played on a ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201

    A Robust Characterization of Nash Equilibrium

    Full text link
    We give a robust characterization of Nash equilibrium by postulating coherent behavior across varying games: Nash equilibrium is the only solution concept that satisfies consequentialism, consistency, and rationality. As a consequence, every equilibrium refinement violates at least one of these properties. We moreover show that every solution concept that approximately satisfies consequentialism, consistency, and rationality returns approximate Nash equilibria. The latter approximation can be made arbitrarily good by increasing the approximation of the axioms. This result extends to various natural subclasses of games such as two-player zero-sum games, potential games, and graphical games

    Convergent learning algorithms for potential games with unknown noisy rewards

    Get PDF
    In this paper, we address the problem of convergence to Nash equilibria in games with rewards that are initially unknown and which must be estimated over time from noisy observations. These games arise in many real-world applications, whenever rewards for actions cannot be prespecified and must be learned on-line. Standard results in game theory, however, do not consider such settings. Specifically, using results from stochastic approximation and differential inclusions, we prove the convergence of variants of fictitious play and adaptive play to Nash equilibria in potential games and weakly acyclic games, respectively. These variants all use a multi-agent version of Q-learning to estimate the reward functions and a novel form of the e-greedy decision rule to select an action. Furthermore, we derive e-greedy decision rules that exploit the sparse interaction structure encoded in two compact graphical representations of games, known as graphical and hypergraphical normal form, to improve the convergence rate of the learning algorithms. The structure captured in these representations naturally occurs in many distributed optimisation and control applications. Finally, we demonstrate the efficacy of the algorithms in a simulated ad hoc wireless sensor network management problem

    Convergence to Equilibrium of Logit Dynamics for Strategic Games

    Get PDF
    We present the first general bounds on the mixing time of the Markov chain associated to the logit dynamics for wide classes of strategic games. The logit dynamics with inverse noise β describes the behavior of a complex system whose individual components act selfishly according to some partial (“noisy”) knowledge of the system, where the capacity of the agent to know the system and compute her best move is measured by parameter β. In particular, we prove nearly tight bounds for potential games and games with dominant strategies. Our results show that for potential games the mixing time is bounded by an exponential in β and in the maximum potential difference. Instead, for games with dominant strategies the mixing time cannot grow arbitrarily with β. Finally, we refine our analysis for a subclass of potential games called graphical coordination games, often used for modeling the diffusion of new technologies. We prove that the mixing time of the logit dynamics for these games can be upper bounded by a function that is exponential in the cutwidth of the underlying graph and in β. Moreover, we consider two specific and popular network topologies, the clique and the ring. For the clique, we prove an almost matching lower bound on the mixing time of the logit dynamics that is exponential in β and in the maximum potential difference, while for the ring we prove that the time of convergence of the logit dynamics to its stationary distribution is significantly shorter
    corecore