1,189 research outputs found

    Model-based Curvilinear Network Extraction and Tracking toward Quantitative Analysis of Biopolymer Networks

    Get PDF
    Curvilinear biopolymer networks pervade living systems. They are routinely imaged by fluorescence microscopy to gain insight into their structural, mechanical, and dynamic properties. Image analysis can facilitate understanding the mechanisms of their formation and their biological functions from a quantitative viewpoint. Due to the variability in network geometry, topology and dynamics as well as often low resolution and low signal-to-noise ratio in images, segmentation and tracking networks from these images is challenging. In this dissertation, we propose a complete framework for extracting the geometry and topology of curvilinear biopolymer networks, and also tracking their dynamics from multi-dimensional images. The proposed multiple Stretching Open Active Contours (SOACs) can identify network centerlines and junctions, and infer plausible network topology. Combined with a kk-partite matching algorithm, temporal correspondences among all the detected filaments can be established. This work enables statistical analysis of structural parameters of biopolymer networks as well as their dynamics. Quantitative evaluation using simulated and experimental images demonstrate its effectiveness and efficiency. Moreover, a principled method of optimizing key parameters without ground truth is proposed for attaining the best extraction result for any type of images. The proposed methods are implemented into a usable open source software ``SOAX\u27\u27. Besides network extraction and tracking, SOAX provides a user-friendly cross-platform GUI for interactive visualization, manual editing and quantitative analysis. Using SOAX to analyze several types of biopolymer networks demonstrates the potential of the proposed methods to help answer key questions in cell biology and biophysics from a quantitative viewpoint

    OMEGA: a software tool for the management, analysis, and dissemination of intracellular trafficking data that incorporates motion type classification and quality control [preprint]

    Get PDF
    MOTIVATION: Particle tracking coupled with time-lapse microscopy is critical for understanding the dynamics of intracellular processes of clinical importance. Spurred on by advances in the spatiotemporal resolution of microscopy and automated computational methods, this field is increasingly amenable to multi-dimensional high-throughput data collection schemes (Snijder et al, 2012). Typically, complex particle tracking datasets generated by individual laboratories are produced with incompatible methodologies that preclude comparison to each other. There is therefore an unmet need for data management systems that facilitate data standardization, meta-analysis, and structured data dissemination. The integration of analysis, visualization, and quality control capabilities into such systems would eliminate the need for manual transfer of data to diverse downstream analysis tools. At the same time, it would lay the foundation for shared trajectory data, particle tracking, and motion analysis standards. RESULTS: Here, we present Open Microscopy Environment inteGrated Analysis (OMEGA), a cross-platform data management, analysis, and visualization system, for particle tracking data, with particular emphasis on results from viral and vesicular trafficking experiments. OMEGA provides easy to use graphical interfaces to implement integrated particle tracking and motion analysis workflows while keeping track of error propagation and data provenance. Specifically, OMEGA: 1) imports image data and metadata from data management tools such as Open Microscopy Environment Remote Objects (OMERO; Allan et al., 2012); 2) tracks intracellular particles moving across time series of image planes; 3) facilitates parameter optimization and trajectory results inspection and validation; 4) performs downstream trajectory analysis and motion type classification; 5) estimates the uncertainty associated with motion analysis; and, 6) facilitates storage and dissemination of analysis results, and analysis definition metadata, on the basis of our newly proposed Minimum Information About Particle Tracking Experiments (MIAPTE; Rigano & Strambio-De-Castillia, 2016; 2017) guidelines in combination with the OME-XML data model (Goldberg et al, 2005)

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Taking aim at moving targets in computational cell migration

    Get PDF
    Cell migration is central to the development and maintenance of multicellular organisms. Fundamental understanding of cell migration can, for example, direct novel therapeutic strategies to control invasive tumor cells. However, the study of cell migration yields an overabundance of experimental data that require demanding processing and analysis for results extraction. Computational methods and tools have therefore become essential in the quantification and modeling of cell migration data. We review computational approaches for the key tasks in the quantification of in vitro cell migration: image pre-processing, motion estimation and feature extraction. Moreover, we summarize the current state-of-the-art for in silico modeling of cell migration. Finally, we provide a list of available software tools for cell migration to assist researchers in choosing the most appropriate solution for their needs

    Conference of Advance Research and Innovation (ICARI-2014) 118 ICARI

    Get PDF
    Abstract With the advent of highly advanced optics and imaging system, currently biological research has reached a stage where scientists can study biological entities and processes at molecular and cellular-level in real time. However, a single experiment consists of hundreds and thousands of parameters to be recorded and a large population of microscopic objects to be tracked. Thus, making manual inspection of such events practically impossible. This calls for an approach to computer-vision based automated tracking and monitoring of cells in biological experiments. This technology promises to revolutionize the research in cellular biology and medical science which includes discovery of diseases by tracking the process in cells, development of therapy and drugs and the study of microscopic biological elements. This article surveys the recent literature in the area of computer vision based automated cell tracking. It discusses the latest trends and successes in the development and introduction of automated cell tracking techniques and systems

    Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure

    Get PDF
    The proper inspection of a cracks pattern over time is a critical diagnosis step to provide a thorough knowledge of the health state of a structure. When monitoring cracks propagating on a planar surface, adopting a single-image-based approach is a more convenient (costly and logistically) solution compared to subjective operators-based solutions. Machine learning (ML)- based monitoring solutions offer the advantage of automation in crack detection; however, complex and time-consuming training must be carried out. This study presents a simple and automated ML-based crack monitoring approach implemented in open sources software that only requires a single image for training. The effectiveness of the approach is assessed conducting work in controlled and real case study sites. For both sites, the generated outputs are significant in terms of accuracy (~1 mm), repeatability (sub-mm) and precision (sub-pixel). The presented results highlight that the successful detection of cracks is achievable with only a straightforward ML-based training procedure conducted on only a single image of the multi-temporal sequence. Furthermore, the use of an innovative camera kit allowed exploiting automated acquisition and transmission fundamental for Internet of Things (IoTs) for structural health monitoring and to reduce user-based operations and increase safety

    Modeling and control of an easy-to-use direct write printing system for fabrication of bone scaffolds

    Get PDF
    3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presented results in the development of an easy-to-use direct-write (DW) printing system for fabrication of rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, were addressed and implemented in a way that researchers outside of the controls field could easily understand. The main goal of this work was to ensure that this system could be easily operated and adjusted by future users to enable a wide range of projects. In addition, we hope the design and development steps presented can be extended to other systems to lower the technical hurdle of motion control for any laboratory or researcher with an interest in using DW printing in his or her field. The design aspects and control parameters included a dynamic model of a 3-stage positioning system for bone scaffold fabrication, a feedforward plus feedback controller design, active pressure regulation, and a user-friendly iterative learning control (ILC) compensator. The ability of the (bio) 3D printer to print rectilinear bone scaffolds is presented. Further, prelimineary work in precise start/stop of ink flow and curved scaffold rods was presented to enable printing of multi-material and curvilinear bone scaffolds in future projects
    • …
    corecore