3,436 research outputs found

    A Bayesian alternative to mutual information for the hierarchical clustering of dependent random variables

    Full text link
    The use of mutual information as a similarity measure in agglomerative hierarchical clustering (AHC) raises an important issue: some correction needs to be applied for the dimensionality of variables. In this work, we formulate the decision of merging dependent multivariate normal variables in an AHC procedure as a Bayesian model comparison. We found that the Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimensionality using a term that scales up the measure as a function of the dimensionality of the variables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in estimate of mutual information, with an additive correction for dimensionality in agreement with the Bayesian information criterion. We investigated the behavior of these Bayesian alternatives (in exact and asymptotic forms) to mutual information on simulated and real data. An encouraging result was first derived on simulations: the hierarchical clustering based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as raw and normalized mutual information in terms of classification accuracy. On a toy example, we found that the Bayesian approaches led to results that were similar to those of mutual information clustering techniques, with the advantage of an automated thresholding. On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it identified clusters consistent with the established outcome of standard procedures. On this application, normalized mutual information had a highly atypical behavior, in the sense that it systematically favored very large clusters. These initial experiments suggest that the proposed Bayesian alternatives to mutual information are a useful new tool for hierarchical clustering

    Time Evolution within a Comoving Window: Scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains

    Full text link
    We present a modification of Matrix Product State time evolution to simulate the propagation of signal fronts on infinite one-dimensional systems. We restrict the calculation to a window moving along with a signal, which by the Lieb-Robinson bound is contained within a light cone. Signal fronts can be studied unperturbed and with high precision for much longer times than on finite systems. Entanglement inside the window is naturally small, greatly lowering computational effort. We investigate the time evolution of the transverse field Ising (TFI) model and of the S=1/2 XXZ antiferromagnet in their symmetry broken phases after several different local quantum quenches. In both models, we observe distinct magnetization plateaus at the signal front for very large times, resembling those previously observed for the particle density of tight binding (TB) fermions. We show that the normalized difference to the magnetization of the ground state exhibits similar scaling behaviour as the density of TB fermions. In the XXZ model there is an additional internal structure of the signal front due to pairing, and wider plateaus with tight binding scaling exponents for the normalized excess magnetization. We also observe parameter dependent interaction effects between individual plateaus, resulting in a slight spatial compression of the plateau widths. In the TFI model, we additionally find that for an initial Jordan-Wigner domain wall state, the complete time evolution of the normalized excess longitudinal magnetization agrees exactly with the particle density of TB fermions.Comment: 10 pages with 5 figures. Appendix with 23 pages, 13 figures and 4 tables. Largely extended and improved versio

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    Get PDF
    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion and Skyrmion crystal with asymmetry, likely to be detected in precision experiments.Comment: 12 pages, latex, 3 figures, published in Nucl Phys B (As Frontiers article

    Dynamical Properties of the Mukhanov-Sasaki Hamiltonian in the context of adiabatic vacua and the Lewis-Riesenfeld invariant

    Full text link
    We use the method of the Lewis-Riesenfeld invariant to analyze the dynamical properties of the Mukhanov-Sasaki Hamiltonian and, following this approach, investigate whether we can obtain possible candidates for initial states in the context of inflation considering a quasi-de Sitter spacetime. Our main interest lies in the question to which extent these already well-established methods at the classical and quantum level for finitely many degrees of freedom can be generalized to field theory. As our results show, a straightforward generalization does in general not lead to a unitary operator on Fock space that implements the corresponding time-dependent canonical transformation associated with the Lewis-Riesenfeld invariant. The action of this operator can be rewritten as a time-dependent Bogoliubov transformation and we show that its generalization to Fock space has to be chosen appropriately in order that the Shale-Stinespring condition is not violated, where we also compare our results to already existing ones in the literature. Furthermore, our analysis relates the Ermakov differential equation that plays the role of an auxiliary equation, whose solution is necessary to construct the Lewis-Riesenfeld invariant, as well as the corresponding time-dependent canonical transformation to the defining differential equation for adiabatic vacua. Therefore, a given solution of the Ermakov equation directly yields a full solution to the differential equation for adiabatic vacua involving no truncation at some adiabatic order. As a consequence, we can interpret our result obtained here as a kind of non-squeezed Bunch-Davies mode, where the term non-squeezed refers to a possible residual squeezing that can be involved in the unitary operator for certain choices of the Bogoliubov map.Comment: 40 pages, 5 figures, minor changes: slightly rewrote the introduction, extended the discussion on the infrared modes, corrected typos and added reference

    SL(2,R) Chern-Simons, Liouville, and Gauge Theory on Duality Walls

    Full text link
    We propose an equivalence of the partition functions of two different 3d gauge theories. On one side of the correspondence we consider the partition function of 3d SL(2,R) Chern-Simons theory on a 3-manifold, obtained as a punctured Riemann surface times an interval. On the other side we have a partition function of a 3d N=2 superconformal field theory on S^3, which is realized as a duality domain wall in a 4d gauge theory on S^4. We sketch the proof of this conjecture using connections with quantum Liouville theory and quantum Teichmuller theory, and study in detail the example of the once-punctured torus. Motivated by these results we advocate a direct Chern-Simons interpretation of the ingredients of (a generalization of) the Alday-Gaiotto-Tachikawa relation. We also comment on M5-brane realizations as well as on possible generalizations of our proposals.Comment: 53+1 pages, 14 figures; v2: typos corrected, references adde

    Affinity and Fluctuations in a Mesoscopic Noria

    Full text link
    We exhibit the invariance of cycle affinities in finite state Markov processes under various natural probabilistic constructions, for instance under conditioning and under a new combinatorial construction that we call ``drag and drop''. We show that cycle affinities have a natural probabilistic meaning related to first passage non-equilibrium fluctuation relations that we establish.Comment: 30 pages, 1 figur
    • …
    corecore