3,242 research outputs found

    MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging -- design, implementation and application on the example of DCE-MRI

    Full text link
    Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in DCE MRI/CT, ADC calculations and IVIM modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. We present a framework for medical image fitting tasks that is included in MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.Comment: 31 pages, 11 figures URL: http://mitk.org/wiki/MITK-ModelFi

    Multilevel (ML-ICLV) & Single Level Integrated Discrete Choice and Latent Variable (ICLV) Models Using Alternative Latent Structures' Conceptualizations

    Get PDF
    The aim of the present endeavor is to experiment on integrating discrete choice with latent variable (ICVL) models using alternative factorial structures’ conceptualizations and do so at both Single Level (Level 0) and Multilevel (ML-ICVL). In doing, specific independent variables amenable to alternative latent variables’ conceptualization were selected. These included: a) 1st-order latent variables (1st-order factors) (FM; FW), b) 1st-order latent variables (1st-order factors) (FM; FW) forming a 2nd-order factor (F), c) Multi-level (two-level) factorial structures (FML0; FML1 and FWL0; FWL1), and d) Bi-Factor factorial structures (FM; FW; FG). The results may be of use to researchers interested in using valid, reliable, and accurate structures of latent variables in ICLV models. We confirm that alternative latent structures of divergent factorial nature exist for the same observed variables, and may have different impact upon the dependent observed choice variable in the ICLV models. Second, DCE utility is conceptualized and estimated at both Level 0 and Level 1 and the differences are evident

    Multilevel (ML-ICLV) & Single Level Integrated Discrete Choice and Latent Variable (ICLV) Models Using Alternative Latent Structures' Conceptualizations

    Get PDF
    The aim of the present endeavor is to experiment on integrating discrete choice with latent variable (ICVL) models using alternative factorial structures’ conceptualizations and do so at both Single Level (Level 0) and Multilevel (ML-ICVL). In doing, specific independent variables amenable to alternative latent variables’ conceptualization were selected. These included: a) 1st-order latent variables (1st-order factors) (FM; FW), b) 1st-order latent variables (1st-order factors) (FM; FW) forming a 2nd-order factor (F), c) Multi-level (two-level) factorial structures (FML0; FML1 and FWL0; FWL1), and d) Bi-Factor factorial structures (FM; FW; FG). The results may be of use to researchers interested in using valid, reliable, and accurate structures of latent variables in ICLV models. We confirm that alternative latent structures of divergent factorial nature exist for the same observed variables, and may have different impact upon the dependent observed choice variable in the ICLV models. Second, DCE utility is conceptualized and estimated at both Level 0 and Level 1 and the differences are evident

    One size does not fit all: investigating doctors' stated preference heterogeneity for job incentives to inform policy in Thailand.

    No full text
    This study investigates heterogeneity in Thai doctors' job preferences at the beginning of their career, with a view to inform the design of effective policies to retain them in rural areas. A discrete choice experiment was designed and administered to 198 young doctors. We analysed the data using several specifications of a random parameter model to account for various sources of preference heterogeneity. By modelling preference heterogeneity, we showed how sensitivity to different incentives varied in different sections of the population. In particular, doctors from rural backgrounds were more sensitive than others to a 45% salary increase and having a post near their home province, but they were less sensitive to a reduction in the number of on-call nights. On the basis of the model results, the effects of two types of interventions were simulated: introducing various incentives and modifying the population structure. The results of the simulations provide multiple elements for consideration for policy-makers interested in designing effective interventions. They also underline the interest of modelling preference heterogeneity carefully

    Do looks matter? A case study on extensive green roofs using discrete choice experiments

    Get PDF
    Extensive green roofs are a promising type of urban green that can play an important role in climate proofing and ultimately in the sustainability of our cities. Despite their increasingly widespread application and the growing scientific interest in extensive green roofs, their aesthetics have received limited scientific attention. Furthermore, several functional issues occur, as weedy species can colonize the roof, and extreme roof conditions can lead to gaps in the vegetation. Apart from altering the function of a green roof, we also expect these issues to influence the perception of extensive green roofs, possibly affecting their acceptance and application. We therefore assessed the preferences of a self-selected convenience sample of 155 Flemish respondents for visual aspects using a discrete choice experiment. This approach, combined with current knowledge on the psychological aspects of green roof visuals, allowed us to quantify extensive green roof preferences. Our results indicate that vegetation gaps and weedy species, together with a diverse vegetation have a considerable impact on green roof perception. Gaps were the single most important attribute, indicated by a relative importance of ca. 53%, with cost coming in at a close second at ca. 46%. Overall, this study explores the applicability of a stated preference technique to assess an often overlooked aspect of extensive green roofs. It thereby provides a foundation for further research aimed at generating practical recommendations for green roof construction and maintenance

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Is the Welfare State Sustainable? Experimental Evidence on Citizens' Preferences for Redistribution

    Get PDF
    The sustainability of the welfare state ultimately depends on citizens’ preferences for income redistribution. They are elicited through a Discrete Choice Experiment performed in 2008 in Switzerland. Attributes are redistribution as GDP share, its uses (the unemployed, old-age pensioners, people with ill health etc.), and nationality of beneficiary. Estimated marginal willingness to pay (WTP) is positive among those who deem benefits too low, and negative otherwise. However, even those who state that government should reduce income inequality exhibit a negative WTP on average. The major finding is that estimated average WTP is maximum at 21% of GDP, clearly below the current value of 25%. Thus, the present Swiss welfare state does not appear sustainable.income redistribution, welfare state, sustainability, preferences, willingness to pay, discrete choice experiments
    • …
    corecore