296 research outputs found

    Performance improvement in VSLAM using stabilized feature points

    Get PDF
    Simultaneous localization and mapping (SLAM) is the main prerequisite for the autonomy of a mobile robot. In this paper, we present a novel method that enhances the consistency of the map using stabilized corner features. The proposed method integrates template matching based video stabilization and Harris corner detector. Extracting Harris corner features from stabilized video consistently increases the accuracy of the localization. Data coming from a video camera and odometry are fused in an Extended Kalman Filter (EKF) to determine the pose of the robot and build the map of the environment. Simulation results validate the performance improvement obtained by the proposed technique

    Visual SLAM algorithms: a survey from 2010 to 2016

    Get PDF
    SLAM is an abbreviation for simultaneous localization and mapping, which is a technique for estimating sensor motion and reconstructing structure in an unknown environment. Especially, Simultaneous Localization and Mapping (SLAM) using cameras is referred to as visual SLAM (vSLAM) because it is based on visual information only. vSLAM can be used as a fundamental technology for various types of applications and has been discussed in the field of computer vision, augmented reality, and robotics in the literature. This paper aims to categorize and summarize recent vSLAM algorithms proposed in different research communities from both technical and historical points of views. Especially, we focus on vSLAM algorithms proposed mainly from 2010 to 2016 because major advance occurred in that period. The technical categories are summarized as follows: feature-based, direct, and RGB-D camera-based approaches

    VSLAM and Navigation System of Unmanned Ground Vehicle Based on RGB-D Camera

    Get PDF
    In this thesis, ROS (Robot Operating System) is used as the software platform and a simple unmanned ground vehicle that is designed and constructed by myself is used as the hardware platform. The most critical issues in the navigation technology of unmanned ground vehicles in unknown environments -SLAM (Simultaneous Localization and Mapping) and autonomous navigation technology are studied. Through the analysis of the principle and structure of visual SLAM, a visual simultaneous localization and mapping algorithm is build. Moreover, accelerate the visual SLAM algorithm through hardware replacement and software algorithm optimization. RealSense D435 is used as the camera of the VSLAM sensor. The algorithm extracts the features from the data of depth camera and calculates the odometry information of the unmanned vehicle through the features matching of the adjacent image. Then update the vehicle’s location and map data using the odometry information. Under the condition that the visual SLAM algorithm works normally, this thesis also uses the 3D map generated to derive the real-time 2D projection map. So as to apply it to the navigation algorithm. Then this thesis realize autonomous navigation and avoids the obstacle function of unmanned vehicle by controlling the driving speed and direction of the vehicle through the navigation algorithm using the 2D projection map. Unmanned ground vehicle path planning is mainly two parts: local path planning and global path planning. Global path planning is mainly used to plan the optimal path to the destination. Local path planning is mainly used to control the speed and direction of the UGV. This thesis analyzes and compares Dijkstra’s algorithm and A* algorithm. Considering the compatible to ROS, Dijkstra’s algorithm is finally used as the global path-planning algorithm. DWA (Dynamic Window Approach) algorithm is used as Local path planning. Under the control of the Dijkstra’s algorithm and the DWA algorithm, unmanned ground vehicles can automatically plan the optimal path to the target point and avoid obstacles. This thesis also designed and constructed a simple unmanned ground vehicle as an experimental platform and design a simple control method basing on differential wheeled unmanned ground vehicle and finally realized the autonomous navigation of unmanned ground vehicles and the function of avoiding obstacles through visual SLAM algorithm and autonomous navigation algorithm. Finally, the main work and deficiencies of this thesis are summarized. And the prospects and difficulties of the research field of unmanned ground vehicles are presented

    ATDN vSLAM: An all-through Deep Learning-Based Solution for Visual Simultaneous Localization and Mapping

    Get PDF
    In this paper, a novel solution is introduced for visual Simultaneous Localization and Mapping (vSLAM) that is built up of Deep Learning components. The proposed architecture is a highly modular framework in which each component offers state of the art results in their respective fields of vision-based deep learning solutions. The paper shows that with the synergic integration of these individual building blocks, a functioning and efficient all-through deep neural (ATDN) vSLAM system can be created. The Embedding Distance Loss function is introduced and using it the ATDN architecture is trained. The resulting system managed to achieve 4.4% translation and 0.0176 deg/m rotational error on a subset of the KITTI dataset. The proposed architecture can be used for efficient and low-latency autonomous driving (AD) aiding database creation as well as a basis for autonomous vehicle (AV) control.Comment: Published in Periodica Polytechnica Electrical Engineering 11 page
    corecore