10,194 research outputs found

    Feature Partitioning for the Co-Traning Setting

    Get PDF
    Supervised learning algorithms rely on availability of labeled data. Labeled data is either scarce or involves substantial human effort in the labeling process. These two factors, along with the abundance of unlabeled data, have spurred research initiatives that exploit unlabeled data to boost supervised learning. This genre of learning algorithms that utilize unlabeled data alongside a small set of labeled data are known as semi-supervised learning algorithms. Data characteristics, such as the presence of a generative model, provide the foundation for applying these learning algorithms. Co-training is one such al gorithm that leverages existence of two redundant views for a data instance. Based on these two views, the co-training algorithm trains two classifiers using the labeled data. The small set of labeled data results in a pair of weak classi fiers. With the help of the unlabeled data the two classifiers alternately boost each other to achieve a high-accuracy classifier. The conditions imposed by the co-training algorithm regarding the data characteristics restrict its application to data that possesses a natural split of the feature set. In this thesis we study the co-training setting and propose to overcome the above mentioned constraint by manufacturing feature splits. We pose and investigate the following questions: 1 . Can a feature split be constructed for a dataset such that the co-training algorithm can be applied to it? 2. If a feature split can be engineered, would splitting the features into more than two partitions give a better classifier? In essence, does moving from co-training (2 classifiers) to k-training (k-classifiers) help? 3. Is there an optimal number of views for a dataset such that k-training leads to an optimal classifier? The task of obtaining feature splits is approached by modeling the problem as a graph partitioning problem. Experiments are conducted on a breadth of text datasets. Results of k-training using constructed feature sets are compared with that of the expectation-maximization algorithm, which has been successful in a semi-supervised setting

    Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applications to Global Poverty

    Full text link
    With the rapid expansion of mobile phone networks in developing countries, large-scale graph machine learning has gained sudden relevance in the study of global poverty. Recent applications range from humanitarian response and poverty estimation to urban planning and epidemic containment. Yet the vast majority of computational tools and algorithms used in these applications do not account for the multi-view nature of social networks: people are related in myriad ways, but most graph learning models treat relations as binary. In this paper, we develop a graph-based convolutional network for learning on multi-view networks. We show that this method outperforms state-of-the-art semi-supervised learning algorithms on three different prediction tasks using mobile phone datasets from three different developing countries. We also show that, while designed specifically for use in poverty research, the algorithm also outperforms existing benchmarks on a broader set of learning tasks on multi-view networks, including node labelling in citation networks

    Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos

    Full text link
    We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic drift. Our approach does not assume exhaustive labeling of each object instance in any single frame, or any explicit annotation of negative data. Working in such a generic setting allow us to tackle multiple object instances in video, many of which are static. In contrast, existing approaches either do not consider multiple object instances per video, or rely heavily on the motion of the objects present. The experiments demonstrate the effectiveness of our approach by evaluating the automatically labeled data on a variety of metrics like quality, coverage (recall), diversity, and relevance to training an object detector.Comment: To appear in CVPR 201

    Mining Brain Networks using Multiple Side Views for Neurological Disorder Identification

    Full text link
    Mining discriminative subgraph patterns from graph data has attracted great interest in recent years. It has a wide variety of applications in disease diagnosis, neuroimaging, etc. Most research on subgraph mining focuses on the graph representation alone. However, in many real-world applications, the side information is available along with the graph data. For example, for neurological disorder identification, in addition to the brain networks derived from neuroimaging data, hundreds of clinical, immunologic, serologic and cognitive measures may also be documented for each subject. These measures compose multiple side views encoding a tremendous amount of supplemental information for diagnostic purposes, yet are often ignored. In this paper, we study the problem of discriminative subgraph selection using multiple side views and propose a novel solution to find an optimal set of subgraph features for graph classification by exploring a plurality of side views. We derive a feature evaluation criterion, named gSide, to estimate the usefulness of subgraph patterns based upon side views. Then we develop a branch-and-bound algorithm, called gMSV, to efficiently search for optimal subgraph features by integrating the subgraph mining process and the procedure of discriminative feature selection. Empirical studies on graph classification tasks for neurological disorders using brain networks demonstrate that subgraph patterns selected by the multi-side-view guided subgraph selection approach can effectively boost graph classification performances and are relevant to disease diagnosis.Comment: in Proceedings of IEEE International Conference on Data Mining (ICDM) 201

    Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

    Full text link
    There has been increased interest in devising learning techniques that combine unlabeled data with labeled data ? i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the labeled and unlabeled data come from the same distribution. It is possible for the labeling process to be associated with a selection bias such that the distributions of data points in the labeled and unlabeled sets are different. Not correcting for such bias can result in biased function approximation with potentially poor performance. In this paper, we present an empirical study of various semi-supervised learning techniques on a variety of datasets. We attempt to answer various questions such as the effect of independence or relevance amongst features, the effect of the size of the labeled and unlabeled sets and the effect of noise. We also investigate the impact of sample-selection bias on the semi-supervised learning techniques under study and implement a bivariate probit technique particularly designed to correct for such bias
    • …
    corecore