4,336 research outputs found

    LASS: a simple assignment model with Laplacian smoothing

    Full text link
    We consider the problem of learning soft assignments of NN items to KK categories given two sources of information: an item-category similarity matrix, which encourages items to be assigned to categories they are similar to (and to not be assigned to categories they are dissimilar to), and an item-item similarity matrix, which encourages similar items to have similar assignments. We propose a simple quadratic programming model that captures this intuition. We give necessary conditions for its solution to be unique, define an out-of-sample mapping, and derive a simple, effective training algorithm based on the alternating direction method of multipliers. The model predicts reasonable assignments from even a few similarity values, and can be seen as a generalization of semisupervised learning. It is particularly useful when items naturally belong to multiple categories, as for example when annotating documents with keywords or pictures with tags, with partially tagged items, or when the categories have complex interrelations (e.g. hierarchical) that are unknown.Comment: 20 pages, 4 figures. A shorter version appears in AAAI 201

    Revisiting data augmentation for subspace clustering

    Full text link
    Subspace clustering is the classical problem of clustering a collection of data samples that approximately lie around several low-dimensional subspaces. The current state-of-the-art approaches for this problem are based on the self-expressive model which represents the samples as linear combination of other samples. However, these approaches require sufficiently well-spread samples for accurate representation which might not be necessarily accessible in many applications. In this paper, we shed light on this commonly neglected issue and argue that data distribution within each subspace plays a critical role in the success of self-expressive models. Our proposed solution to tackle this issue is motivated by the central role of data augmentation in the generalization power of deep neural networks. We propose two subspace clustering frameworks for both unsupervised and semi-supervised settings that use augmented samples as an enlarged dictionary to improve the quality of the self-expressive representation. We present an automatic augmentation strategy using a few labeled samples for the semi-supervised problem relying on the fact that the data samples lie in the union of multiple linear subspaces. Experimental results confirm the effectiveness of data augmentation, as it significantly improves the performance of general self-expressive models.Comment: 38 pages (including 10 of supplementary material

    A deep matrix factorization method for learning attribute representations

    Get PDF
    Semi-Non-negative Matrix Factorization is a technique that learns a low-dimensional representation of a dataset that lends itself to a clustering interpretation. It is possible that the mapping between this new representation and our original data matrix contains rather complex hierarchical information with implicit lower-level hidden attributes, that classical one level clustering methodologies can not interpret. In this work we propose a novel model, Deep Semi-NMF, that is able to learn such hidden representations that allow themselves to an interpretation of clustering according to different, unknown attributes of a given dataset. We also present a semi-supervised version of the algorithm, named Deep WSF, that allows the use of (partial) prior information for each of the known attributes of a dataset, that allows the model to be used on datasets with mixed attribute knowledge. Finally, we show that our models are able to learn low-dimensional representations that are better suited for clustering, but also classification, outperforming Semi-Non-negative Matrix Factorization, but also other state-of-the-art methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015
    corecore