3,889 research outputs found

    Energy Efficiency and Quality of Services in Virtualized Cloud Radio Access Network

    Get PDF
    Cloud Radio Access Network (C-RAN) is being widely studied for soft and green fifth generation of Long Term Evolution - Advanced (LTE-A). The recent technology advancement in network virtualization function (NFV) and software defined radio (SDR) has enabled virtualization of Baseband Units (BBU) and sharing of underlying general purpose processing (GPP) infrastructure. Also, new innovations in optical transport network (OTN) such as Dark Fiber provides low latency and high bandwidth channels that can support C-RAN for more than forty-kilometer radius. All these advancements make C-RAN feasible and practical. Several virtualization strategies and architectures are proposed for C-RAN and it has been established that C-RAN offers higher energy efficiency and better resource utilization than the current decentralized radio access network (D-RAN). This project studies proposed resource utilization strategy and device a method to calculate power utilization. Then proposes and analyzes a new resource management and virtual BBU placement strategy for C-RAN based on demand prediction and inter-BBU communication load. The new approach is compared with existing state of art strategies with same input scenarios and load. The trade-offs between energy efficiency and quality of services is discussed. The project concludes with comparison between different strategies based on complexity of the system, performance in terms of service availability and optimization efficiency in different scenarios

    Control theory for principled heap sizing

    Get PDF
    We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
    corecore