17,825 research outputs found

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    Transductive Classification Methods for Mixed Graphs

    Full text link
    In this paper we provide a principled approach to solve a transductive classification problem involving a similar graph (edges tend to connect nodes with same labels) and a dissimilar graph (edges tend to connect nodes with opposing labels). Most of the existing methods, e.g., Information Regularization (IR), Weighted vote Relational Neighbor classifier (WvRN) etc, assume that the given graph is only a similar graph. We extend the IR and WvRN methods to deal with mixed graphs. We evaluate the proposed extensions on several benchmark datasets as well as two real world datasets and demonstrate the usefulness of our ideas.Comment: 8 Pages, 2 Tables, 2 Figures, KDD Workshop - MLG'11 San Diego, CA, US

    Information Extraction from Scientific Literature for Method Recommendation

    Full text link
    As a research community grows, more and more papers are published each year. As a result there is increasing demand for improved methods for finding relevant papers, automatically understanding the key ideas and recommending potential methods for a target problem. Despite advances in search engines, it is still hard to identify new technologies according to a researcher's need. Due to the large variety of domains and extremely limited annotated resources, there has been relatively little work on leveraging natural language processing in scientific recommendation. In this proposal, we aim at making scientific recommendations by extracting scientific terms from a large collection of scientific papers and organizing the terms into a knowledge graph. In preliminary work, we trained a scientific term extractor using a small amount of annotated data and obtained state-of-the-art performance by leveraging large amount of unannotated papers through applying multiple semi-supervised approaches. We propose to construct a knowledge graph in a way that can make minimal use of hand annotated data, using only the extracted terms, unsupervised relational signals such as co-occurrence, and structural external resources such as Wikipedia. Latent relations between scientific terms can be learned from the graph. Recommendations will be made through graph inference for both observed and unobserved relational pairs.Comment: Thesis Proposal. arXiv admin note: text overlap with arXiv:1708.0607

    Relation Extraction : A Survey

    Full text link
    With the advent of the Internet, large amount of digital text is generated everyday in the form of news articles, research publications, blogs, question answering forums and social media. It is important to develop techniques for extracting information automatically from these documents, as lot of important information is hidden within them. This extracted information can be used to improve access and management of knowledge hidden in large text corpora. Several applications such as Question Answering, Information Retrieval would benefit from this information. Entities like persons and organizations, form the most basic unit of the information. Occurrences of entities in a sentence are often linked through well-defined relations; e.g., occurrences of person and organization in a sentence may be linked through relations such as employed at. The task of Relation Extraction (RE) is to identify such relations automatically. In this paper, we survey several important supervised, semi-supervised and unsupervised RE techniques. We also cover the paradigms of Open Information Extraction (OIE) and Distant Supervision. Finally, we describe some of the recent trends in the RE techniques and possible future research directions. This survey would be useful for three kinds of readers - i) Newcomers in the field who want to quickly learn about RE; ii) Researchers who want to know how the various RE techniques evolved over time and what are possible future research directions and iii) Practitioners who just need to know which RE technique works best in various settings

    Parallel and Distributed Approaches for Graph Based Semi-supervised Learning

    Full text link
    Two approaches for graph based semi-supervised learning are proposed. The firstapproach is based on iteration of an affine map. A key element of the affine map iteration is sparsematrix-vector multiplication, which has several very efficient parallel implementations. The secondapproach belongs to the class of Markov Chain Monte Carlo (MCMC) algorithms. It is based onsampling of nodes by performing a random walk on the graph. The latter approach is distributedby its nature and can be easily implemented on several processors or over the network. Boththeoretical and practical evaluations are provided. It is found that the nodes are classified intotheir class with very small error. The sampling algorithm's ability to track new incoming nodesand to classify them is also demonstrated

    A Survey on Semi-Supervised Learning Techniques

    Full text link
    Semisupervised learning is a learning standard which deals with the study of how computers and natural systems such as human beings acquire knowledge in the presence of both labeled and unlabeled data. Semisupervised learning based methods are preferred when compared to the supervised and unsupervised learning because of the improved performance shown by the semisupervised approaches in the presence of large volumes of data. Labels are very hard to attain while unlabeled data are surplus, therefore semisupervised learning is a noble indication to shrink human labor and improve accuracy. There has been a large spectrum of ideas on semisupervised learning. In this paper we bring out some of the key approaches for semisupervised learning.Comment: 5 Pages, 3 figures, Published with International Journal of Computer Trends and Technology (IJCTT

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic

    Hypergraph p-Laplacian Regularization for Remote Sensing Image Recognition

    Full text link
    It is of great importance to preserve locality and similarity information in semi-supervised learning (SSL) based applications. Graph based SSL and manifold regularization based SSL including Laplacian regularization (LapR) and Hypergraph Laplacian regularization (HLapR) are representative SSL methods and have achieved prominent performance by exploiting the relationship of sample distribution. However, it is still a great challenge to exactly explore and exploit the local structure of the data distribution. In this paper, we present an effect and effective approximation algorithm of Hypergraph p-Laplacian and then propose Hypergraph p-Laplacian regularization (HpLapR) to preserve the geometry of the probability distribution. In particular, p-Laplacian is a nonlinear generalization of the standard graph Laplacian and Hypergraph is a generalization of a standard graph. Therefore, the proposed HpLapR provides more potential to exploiting the local structure preserving. We apply HpLapR to logistic regression and conduct the implementations for remote sensing image recognition. We compare the proposed HpLapR to several popular manifold regularization based SSL methods including LapR, HLapR and HpLapR on UC-Merced dataset. The experimental results demonstrate the superiority of the proposed HpLapR.Comment: 9 pages, 6 figure

    Semi-Supervised Multi-aspect Detection of Misinformation using Hierarchical Joint Decomposition

    Full text link
    Distinguishing between misinformation and real information is one of the most challenging problems in today's interconnected world. The vast majority of the state-of-the-art in detecting misinformation is fully supervised, requiring a large number of high-quality human annotations. However, the availability of such annotations cannot be taken for granted, since it is very costly, time-consuming, and challenging to do so in a way that keeps up with the proliferation of misinformation. In this work, we are interested in exploring scenarios where the number of annotations is limited. In such scenarios, we investigate how tapping on a diverse number of resources that characterize a news article, henceforth referred to as "aspects" can compensate for the lack of labels. In particular, our contributions in this paper are twofold: 1) We propose the use of three different aspects: article content, context of social sharing behaviors, and host website/domain features, and 2) We introduce a principled tensor based embedding framework that combines all those aspects effectively. We propose HiJoD a 2-level decomposition pipeline which not only outperforms state-of-the-art methods with F1-scores of 74% and 81% on Twitter and Politifact datasets respectively but also is an order of magnitude faster than similar ensemble approaches

    Semi-Supervised Online Structure Learning for Composite Event Recognition

    Full text link
    Online structure learning approaches, such as those stemming from Statistical Relational Learning, enable the discovery of complex relations in noisy data streams. However, these methods assume the existence of fully-labelled training data, which is unrealistic for most real-world applications. We present a novel approach for completing the supervision of a semi-supervised structure learning task. We incorporate graph-cut minimisation, a technique that derives labels for unlabelled data, based on their distance to their labelled counterparts. In order to adapt graph-cut minimisation to first order logic, we employ a suitable structural distance for measuring the distance between sets of logical atoms. The labelling process is achieved online (single-pass) by means of a caching mechanism and the Hoeffding bound, a statistical tool to approximate globally-optimal decisions from locally-optimal ones. We evaluate our approach on the task of composite event recognition by using a benchmark dataset for human activity recognition, as well as a real dataset for maritime monitoring. The evaluation suggests that our approach can effectively complete the missing labels and eventually, improve the accuracy of the underlying structure learning system
    • …
    corecore