36,832 research outputs found

    Graph-based Patterns for Local Coherence Modeling

    Get PDF
    Coherence is an essential property of well-written texts. It distinguishes a multi-sentence text from a sequence of randomly strung sentences. The task of local coherence modeling is about the way that sentences in a text link up one another. Solving this task is beneficial for assessing the quality of texts. Moreover, a coherence model can be integrated into text generation systems such as text summarizers to produce coherent texts. In this dissertation, we present a graph-based approach to local coherence modeling that accounts for the connectivity structure among sentences in a text. Graphs give our model the capability to take into account relations between non-adjacent sentences as well as those between adjacent sentences. Besides, the connectivity style among nodes in graphs reflects the relationships among sentences in a text. We first employ the entity graph approach, proposed by Guinaudeau and Strube (2013), to represent a text via a graph. In the entity graph representation of a text, nodes encode sentences and edges depict the existence of a pair of coreferent mentions in sentences. We then devise graph-based features to capture the connectivity structure of nodes in a graph, and accordingly the connectivity structure of sentences in the corresponding text. We extract all subgraphs of entity graphs as features which encode the connectivity structure of graphs. Frequencies of subgraphs correlate with the perceived coherence of their corresponding texts. Therefore, we refer to these subgraphs as coherence patterns. In order to complete our approach to coherence modeling, we propose a new graph representation of texts, rather than the entity graph. Our approach employs lexico-semantic relations among words in sentences, instead of only entity coreference relations, to model relationships between sentences via a graph. This new lexical graph representation of text plus our method for mining coherence patterns make our coherence model. We evaluate our approach on the readability assessment task because a primary factor of readability is coherence. Coherent texts are easy to read and consequently demand less effort from their readers. Our extensive experiments on two separate readability assessment datasets show that frequencies of coherence patterns in texts correlate with the readability ratings assigned by human judges. By training a machine learning method on our coherence patterns, our model outperforms its counterparts on ranking texts with respect to their readability. As one of the ultimate goals of coherence models is to be used in text generation systems, we show how our coherence patterns can be integrated into a graph-based text summarizer to produce informative and coherent summaries. Our coherence patterns improve the performance of the summarization system based on both standard summarization metrics and human evaluations. An implementation of the approaches discussed in this dissertation is publicly available

    Entropy and Graph Based Modelling of Document Coherence using Discourse Entities: An Application

    Full text link
    We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse entities in text. Experiments with several instantiations of these models show that: (i) our models perform on a par with two other well-known models of text coherence even without any parameter tuning, and (ii) reranking retrieval results according to their coherence scores gives notable performance gains, confirming a relation between document coherence and relevance. This work contributes two novel models of document coherence, the application of which to IR complements recent work in the integration of document cohesiveness or comprehensibility to ranking [5, 56]

    Text Coherence Analysis Based on Deep Neural Network

    Full text link
    In this paper, we propose a novel deep coherence model (DCM) using a convolutional neural network architecture to capture the text coherence. The text coherence problem is investigated with a new perspective of learning sentence distributional representation and text coherence modeling simultaneously. In particular, the model captures the interactions between sentences by computing the similarities of their distributional representations. Further, it can be easily trained in an end-to-end fashion. The proposed model is evaluated on a standard Sentence Ordering task. The experimental results demonstrate its effectiveness and promise in coherence assessment showing a significant improvement over the state-of-the-art by a wide margin.Comment: 4 pages, 2 figures, CIKM 201

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Functional connectivity in relation to motor performance and recovery after stroke.

    Get PDF
    Plasticity after stroke has traditionally been studied by observing changes only in the spatial distribution and laterality of focal brain activation during affected limb movement. However, neural reorganization is multifaceted and our understanding may be enhanced by examining dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. Here, we review functional connectivity as a promising means of assessing the consequences of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide a brief overview of techniques used to assess functional connectivity in subjects with stroke. Next, we review task-related and resting-state functional connectivity studies that demonstrate a lesion-induced disruption of neural networks, the relationship of the extent of this disruption with motor performance, and the potential for network reorganization in the presence of a stroke lesion. We conclude with suggestions for future research and theories that may enhance the interpretation of changing functional connectivity. Overall findings suggest that a network level assessment provides a useful framework to examine brain reorganization and to potentially better predict behavioral outcomes following stroke

    Multiscale Topological Properties Of Functional Brain Networks During Motor Imagery After Stroke

    Full text link
    In recent years, network analyses have been used to evaluate brain reorganization following stroke. However, many studies have often focused on single topological scales, leading to an incomplete model of how focal brain lesions affect multiple network properties simultaneously and how changes on smaller scales influence those on larger scales. In an EEG-based experiment on the performance of hand motor imagery (MI) in 20 patients with unilateral stroke, we observed that the anatomic lesion affects the functional brain network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of the affected hand (Ahand) elicited a significantly lower smallworldness and local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the abnormal reduction in Eloc significantly depended on the increase in interhemispheric connectivity, which was in turn determined primarily by the rise in regional connectivity in the parieto-occipital sites of the affected hemisphere. Further, in contrast to the Uhand MI, in which significantly high connectivity was observed for the contralateral sensorimotor regions of the unaffected hemisphere, the regions that increased in connection during the Ahand MI lay in the frontal and parietal regions of the contralaterally affected hemisphere. Finally, the overall sensorimotor function of our patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly predicted by the connectivity of their affected hemisphere. These results increase our understanding of stroke-induced alterations in functional brain networks.Comment: Neuroimage, accepted manuscript (unedited version) available online 19-June-201

    EEG Resting-State Brain Topological Reorganization as a Function of Age

    Get PDF
    Resting state connectivity has been increasingly studied to investigate the effects of aging on the brain. A reduced organization in the communication between brain areas was demonstrated b y combining a variety of different imaging technologies (fMRI, EEG, and MEG) and graph theory. In this paper, we propose a methodology to get new insights into resting state connectivity and its variations with age, by combining advanced techniques of effective connectivity estimation, graph theoretical approach, and classification by SVM method. We analyzed high density EEG signal srecordedatrestfrom71healthysubjects(age:20–63years). Weighted and directed connectivity was computed by means of Partial Directed Coherence based on a General Linear Kalman filter approach. To keep the information collected by the estimator, weighted and directed graph indices were extracted from the resulting networks. A relation between brain network properties and age of the subject was found, indicating a tendency of the network to randomly organize increasing with age. This result is also confirmed dividing the whole population into two subgroups according to the age (young and middle-aged adults): significant differences exist in terms of network organization measures. Classification of the subjects by means of such indices returns an accuracy greater than 80
    • …
    corecore