25 research outputs found

    Six topics on inscribable polytopes

    Full text link
    Inscribability of polytopes is a classic subject but also a lively research area nowadays. We illustrate this with a selection of well-known results and recent developments on six particular topics related to inscribable polytopes. Along the way we collect a list of (new and old) open questions.Comment: 11 page

    Six Topics on Inscribable Polytopes

    Get PDF

    Reconstructing Geometric Structures from Combinatorial and Metric Information

    Get PDF
    In this dissertation, we address three reconstruction problems. First, we address the problem of reconstructing a Delaunay triangulation from a maximal planar graph. A maximal planar graph G is Delaunay realizable if there exists a realization of G as a Delaunay triangulation on the plane. Several classes of graphs with particular graph-theoretic properties are known to be Delaunay realizable. One such class of graphs is outerplanar graph. In this dissertation, we present a new proof that an outerplanar graph is Delaunay realizable. Given a convex polyhedron P and a point s on the surface (the source), the ridge tree or cut locus is a collection of points with multiple shortest paths from s on the surface of P. If we compute the shortest paths from s to all polyhedral vertices of P and cut the surface along these paths, we obtain a planar polygon called the shortest path star (sp-star) unfolding. It is known that for any convex polyhedron and a source point, the ridge tree is contained in the sp-star unfolding polygon [8]. Given a combinatorial structure of a ridge tree, we show how to construct the ridge tree and the sp-star unfolding in which it lies. In this process, we address several problems concerning the existence of sp-star unfoldings on specified source point sets. Finally, we introduce and study a new variant of the sp-star unfolding called (geodesic) star unfolding. In this unfolding, we cut the surface of the convex polyhedron along a set of non-crossing geodesics (not-necessarily the shortest). We study its properties and address its realization problem. Finally, we consider the following problem: given a geodesic star unfolding of some convex polyhedron and a source point, how can we derive the sp-star unfolding of the same polyhedron and the source point? We introduce a new algorithmic operation and perform experiments using that operation on a large number of geodesic star unfolding polygons. Experimental data provides strong evidence that the successive applications of this operation on geodesic star unfoldings will lead us to the sp-star unfolding

    COMBINATORIAL INSCRIBABILITY OBSTRUCTIONS FOR HIGHER DIMENSIONAL POLYTOPES

    Get PDF
    For 3-dimensional convex polytopes, inscribability is a classical property that is relatively well-understood due to its relation with Delaunay subdivisions of the plane and hyperbolic geometry. In particular, inscribability can be tested in polynomial time, and for every f-vector of 3-polytopes, there exists an inscribable polytope with that f-vector. For higher dimensional polytopes, much less is known. Of course, for any inscribable polytope, all of its lower dimensional faces need to be inscribable, but this condition does not appear to be very strong. We observe non-trivial new obstructions to the inscribability of polytopes that arise when imposing that a certain inscribable face be inscribed. Using this obstruction, we show that the duals of the 4-dimensional cyclic polytopes with at least eight vertices - all of whose faces are inscribable - are not inscribable. This result is optimal in the following sense: We prove that the duals of the cyclic 4-polytopes with up to seven vertices are, in fact, inscribable. Moreover, we interpret this obstruction combinatorially as a forbidden subposet of the face lattice of a polytope, show that d-dimensional cyclic polytopes with at least d+4 vertices are not circumscribable, and that no dual of a neighborly 4-polytope with eight vertices, that is, no polytope with f-vector (20,40,28,8), is inscribable

    Finding Hamiltonian cycles in Delaunay triangulations is NP-complete

    Get PDF
    AbstractIt is shown that it is an NP-complete problem to determine whether a Delaunay triangulation or an inscribable polyhedron has a Hamiltonian cycle. It is also shown that there exist nondegenerate Delaunay triangulations and simplicial, inscribable polyhedra without 2-factors

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    Characterisation of Spherical Splits

    Get PDF
    We investigate the properties of collections of linear bipartitions of points embedded into R3\R^3, which we call collections of affine splits. Our main concern is characterising the collections generated when the points are embedded into S2S^2; that is, when the collection of splits is spherical. We find that maximal systems of splits occur for points embedded in general position or general position in S2S^2 for affine and spherical splits, respectively. Furthermore, we explore the connection of such systems with oriented matroids and show that a maximal collection of spherical splits map to the topes of a uniform, acyclic oriented matroid of rank 4, which is a uniform matroid polytope. Additionally, we introduce the graphs associated with collections of splits and show that maximal collections of spherical splits induce maximal planar graphs and, hence, the simplicial 3-polytopes. Finally, we introduce some methodologies for generating either the hyperplanes corresponding to a split system on an arbitrary embedding of points through a linear programming approach or generating the polytope given an abstract system of splits by utilising the properties of matroid polytopes. Establishing a solid theory for understanding spherical split systems provides a basis for not only combinatorial–geometric investigations, but also the development of bioinformatic tools for investigating non-tree-like evolutionary histories in a three-dimensional manner
    corecore