1,618 research outputs found

    Subspace Clustering Based Tag Sharing for Inductive Tag Matrix Refinement with Complex Errors

    Full text link
    Annotating images with tags is useful for indexing and retrieving images. However, many available annotation data include missing or inaccurate annotations. In this paper, we propose an image annotation framework which sequentially performs tag completion and refinement. We utilize the subspace property of data via sparse subspace clustering for tag completion. Then we propose a novel matrix completion model for tag refinement, integrating visual correlation, semantic correlation and the novelly studied property of complex errors. The proposed method outperforms the state-of-the-art approaches on multiple benchmark datasets even when they contain certain levels of annotation noise.Comment: 4 page

    Structured Priors for Sparse-Representation-Based Hyperspectral Image Classification

    Full text link
    Pixel-wise classification, where each pixel is assigned to a predefined class, is one of the most important procedures in hyperspectral image (HSI) analysis. By representing a test pixel as a linear combination of a small subset of labeled pixels, a sparse representation classifier (SRC) gives rather plausible results compared with that of traditional classifiers such as the support vector machine (SVM). Recently, by incorporating additional structured sparsity priors, the second generation SRCs have appeared in the literature and are reported to further improve the performance of HSI. These priors are based on exploiting the spatial dependencies between the neighboring pixels, the inherent structure of the dictionary, or both. In this paper, we review and compare several structured priors for sparse-representation-based HSI classification. We also propose a new structured prior called the low rank group prior, which can be considered as a modification of the low rank prior. Furthermore, we will investigate how different structured priors improve the result for the HSI classification.Comment: IEEE Geoscience and Remote Sensing Lette

    Locally Linear Embedding Clustering Algorithm for Natural Imagery

    Full text link
    The ability to characterize the color content of natural imagery is an important application of image processing. The pixel by pixel coloring of images may be viewed naturally as points in color space, and the inherent structure and distribution of these points affords a quantization, through clustering, of the color information in the image. In this paper, we present a novel topologically driven clustering algorithm that permits segmentation of the color features in a digital image. The algorithm blends Locally Linear Embedding (LLE) and vector quantization by mapping color information to a lower dimensional space, identifying distinct color regions, and classifying pixels together based on both a proximity measure and color content. It is observed that these techniques permit a significant reduction in color resolution while maintaining the visually important features of images

    Two-Manifold Problems

    Full text link
    Recently, there has been much interest in spectral approaches to learning manifolds---so-called kernel eigenmap methods. These methods have had some successes, but their applicability is limited because they are not robust to noise. To address this limitation, we look at two-manifold problems, in which we simultaneously reconstruct two related manifolds, each representing a different view of the same data. By solving these interconnected learning problems together and allowing information to flow between them, two-manifold algorithms are able to succeed where a non-integrated approach would fail: each view allows us to suppress noise in the other, reducing bias in the same way that an instrumental variable allows us to remove bias in a {linear} dimensionality reduction problem. We propose a class of algorithms for two-manifold problems, based on spectral decomposition of cross-covariance operators in Hilbert space. Finally, we discuss situations where two-manifold problems are useful, and demonstrate that solving a two-manifold problem can aid in learning a nonlinear dynamical system from limited data

    Self-Expressive Decompositions for Matrix Approximation and Clustering

    Full text link
    Data-aware methods for dimensionality reduction and matrix decomposition aim to find low-dimensional structure in a collection of data. Classical approaches discover such structure by learning a basis that can efficiently express the collection. Recently, "self expression", the idea of using a small subset of data vectors to represent the full collection, has been developed as an alternative to learning. Here, we introduce a scalable method for computing sparse SElf-Expressive Decompositions (SEED). SEED is a greedy method that constructs a basis by sequentially selecting incoherent vectors from the dataset. After forming a basis from a subset of vectors in the dataset, SEED then computes a sparse representation of the dataset with respect to this basis. We develop sufficient conditions under which SEED exactly represents low rank matrices and vectors sampled from a unions of independent subspaces. We show how SEED can be used in applications ranging from matrix approximation and denoising to clustering, and apply it to numerous real-world datasets. Our results demonstrate that SEED is an attractive low-complexity alternative to other sparse matrix factorization approaches such as sparse PCA and self-expressive methods for clustering.Comment: 11 pages, 7 figure

    Accelerated Sparse Subspace Clustering

    Full text link
    State-of-the-art algorithms for sparse subspace clustering perform spectral clustering on a similarity matrix typically obtained by representing each data point as a sparse combination of other points using either basis pursuit (BP) or orthogonal matching pursuit (OMP). BP-based methods are often prohibitive in practice while the performance of OMP-based schemes are unsatisfactory, especially in settings where data points are highly similar. In this paper, we propose a novel algorithm that exploits an accelerated variant of orthogonal least-squares to efficiently find the underlying subspaces. We show that under certain conditions the proposed algorithm returns a subspace-preserving solution. Simulation results illustrate that the proposed method compares favorably with BP-based method in terms of running time while being significantly more accurate than OMP-based schemes

    Tensor Laplacian Regularized Low-Rank Representation for Non-uniformly Distributed Data Subspace Clustering

    Full text link
    Low-Rank Representation (LRR) highly suffers from discarding the locality information of data points in subspace clustering, as it may not incorporate the data structure nonlinearity and the non-uniform distribution of observations over the ambient space. Thus, the information of the observational density is lost by the state-of-art LRR models, as they take a constant number of adjacent neighbors into account. This, as a result, degrades the subspace clustering accuracy in such situations. To cope with deficiency, in this paper, we propose to consider a hypergraph model to facilitate having a variable number of adjacent nodes and incorporating the locality information of the data. The sparsity of the number of subspaces is also taken into account. To do so, an optimization problem is defined based on a set of regularization terms and is solved by developing a tensor Laplacian-based algorithm. Extensive experiments on artificial and real datasets demonstrate the higher accuracy and precision of the proposed method in subspace clustering compared to the state-of-the-art methods. The outperformance of this method is more revealed in presence of inherent structure of the data such as nonlinearity, geometrical overlapping, and outliers

    Sketched SVD: Recovering Spectral Features from Compressive Measurements

    Full text link
    We consider a streaming data model in which n sensors observe individual streams of data, presented in a turnstile model. Our goal is to analyze the singular value decomposition (SVD) of the matrix of data defined implicitly by the stream of updates. Each column i of the data matrix is given by the stream of updates seen at sensor i. Our approach is to sketch each column of the matrix, forming a "sketch matrix" Y, and then to compute the SVD of the sketch matrix. We show that the singular values and right singular vectors of Y are close to those of X, with small relative error. We also believe that this bound is of independent interest in non-streaming and non-distributed data collection settings. Assuming that the data matrix X is of size Nxn, then with m linear measurements of each column of X, we obtain a smaller matrix Y with dimensions mxn. If m = O(k \epsilon^{-2} (log(1/\epsilon) + log(1/\delta)), where k denotes the rank of X, then with probability at least 1-\delta, the singular values \sigma'_j of Y satisfy the following relative error result (1-\epsilon)^(1/2)<= \sigma'_j/\sigma_j <= (1 + \epsilon)^(1/2) as compared to the singular values \sigma_j of the original matrix X. Furthermore, the right singular vectors v'_j of Y satisfy ||v_j-v_j'||_2 <= min(sqrt{2}, (\epsilon\sqrt{1+\epsilon})/(\sqrt{1-\epsilon}) max_{i\neq j} (\sqrt{2}\sigma_i\sigma_j)/(min_{c\in[-1,1]}(|\sigma^2_i-\sigma^2_j(1+c\epsilon)|))) as compared to the right singular vectors v_j of X. We apply this result to obtain a streaming graph algorithm to approximate the eigenvalues and eigenvectors of the graph Laplacian in the case where the graph has low rank (many connected components)

    Multi-View Surveillance Video Summarization via Joint Embedding and Sparse Optimization

    Full text link
    Most traditional video summarization methods are designed to generate effective summaries for single-view videos, and thus they cannot fully exploit the complicated intra and inter-view correlations in summarizing multi-view videos in a camera network. In this paper, with the aim of summarizing multi-view videos, we introduce a novel unsupervised framework via joint embedding and sparse representative selection. The objective function is two-fold. The first is to capture the multi-view correlations via an embedding, which helps in extracting a diverse set of representatives. The second is to use a `2;1- norm to model the sparsity while selecting representative shots for the summary. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the correlations, but also indicate the requirements of sparse representative selection. We present an efficient alternating algorithm based on half-quadratic minimization to solve the proposed non-smooth and non-convex objective with convergence analysis. A key advantage of the proposed approach with respect to the state-of-the-art is that it can summarize multi-view videos without assuming any prior correspondences/alignment between them, e.g., uncalibrated camera networks. Rigorous experiments on several multi-view datasets demonstrate that our approach clearly outperforms the state-of-the-art methods.Comment: IEEE Trans. on Multimedia, 2017 (In Press

    Hypergraph p-Laplacian Regularization for Remote Sensing Image Recognition

    Full text link
    It is of great importance to preserve locality and similarity information in semi-supervised learning (SSL) based applications. Graph based SSL and manifold regularization based SSL including Laplacian regularization (LapR) and Hypergraph Laplacian regularization (HLapR) are representative SSL methods and have achieved prominent performance by exploiting the relationship of sample distribution. However, it is still a great challenge to exactly explore and exploit the local structure of the data distribution. In this paper, we present an effect and effective approximation algorithm of Hypergraph p-Laplacian and then propose Hypergraph p-Laplacian regularization (HpLapR) to preserve the geometry of the probability distribution. In particular, p-Laplacian is a nonlinear generalization of the standard graph Laplacian and Hypergraph is a generalization of a standard graph. Therefore, the proposed HpLapR provides more potential to exploiting the local structure preserving. We apply HpLapR to logistic regression and conduct the implementations for remote sensing image recognition. We compare the proposed HpLapR to several popular manifold regularization based SSL methods including LapR, HLapR and HpLapR on UC-Merced dataset. The experimental results demonstrate the superiority of the proposed HpLapR.Comment: 9 pages, 6 figure
    • …
    corecore