38,628 research outputs found

    Music Maker – A Camera-based Music Making Tool for Physical Rehabilitation

    Full text link
    The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.National Science Foundation (IIS-0308213, IIS-039009, IIS-0093367, P200A01031, EIA-0202067 to M.B.); National Institutes of Health (DC-03663 to E.S.); Boston University (Dudley Allen Sargent Research Fund (to A.L.)

    Generalized Tonnetze and Zeitnetze, and the topology of music concepts

    Full text link
    The music-theoretic idea of a Tonnetz can be generalized at different levels: as a network of chords relating by maximal intersection, a simplicial complex in which vertices represent notes and simplices represent chords, and as a triangulation of a manifold or other geometrical space. The geometrical construct is of particular interest, in that allows us to represent inherently topological aspects to important musical concepts. Two kinds of music-theoretical geometry have been proposed that can house Tonnetze: geometrical duals of voice-leading spaces and Fourier phase spaces. Fourier phase spaces are particularly appropriate for Tonnetze in that their objects are pitch-class distributions (real-valued weightings of the 12 pitch classes) and proximity in these space relates to shared pitch-class content. They admit of a particularly general method of constructing a geometrical Tonnetz that allows for interval and chord duplications in a toroidal geometry. This article examines how these duplications can relate to important musical concepts such as key or pitch height, and details a method of removing such redundancies and the resulting changes to the homology of the space. The method also transfers to the rhythmic domain, defining Zeitnetze for cyclic rhythms. A number of possible Tonnetze are illustrated: on triads, seventh chords, ninth chords, scalar tetrachords, scales, etc., as well as Zeitnetze on common cyclic rhythms or timelines. Their different topologies – whether orientable, bounded, manifold, etc. – reveal some of the topological character of musical concepts.Accepted manuscrip

    Directed networks as a novel way to describe and analyze cardiac excitation : directed graph mapping

    Get PDF
    Networks provide a powerful methodology with applications in a variety of biological, technological and social systems such as analysis of brain data, social networks, internet search engine algorithms, etc. To date, directed networks have not yet been applied to characterize the excitation of the human heart. In clinical practice, cardiac excitation is recorded by multiple discrete electrodes. During (normal) sinus rhythm or during cardiac arrhythmias, successive excitation connects neighboring electrodes, resulting in their own unique directed network. This in theory makes it a perfect fit for directed network analysis. In this study, we applied directed networks to the heart in order to describe and characterize cardiac arrhythmias. Proof-of-principle was established using in-silico and clinical data. We demonstrated that tools used in network theory analysis allow determination of the mechanism and location of certain cardiac arrhythmias. We show that the robustness of this approach can potentially exceed the existing state-of-the art methodology used in clinics. Furthermore, implementation of these techniques in daily practice can improve the accuracy and speed of cardiac arrhythmia analysis. It may also provide novel insights in arrhythmias that are still incompletely understood

    Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

    Get PDF
    Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measured with functional Magnetic Resonance Imaging (fMRI). We analyzed temporal fluctuations in BOLD connectivity and their electrophysiological correlates, by means of long (≈50 min) joint electroencephalographic (EEG) and fMRI recordings obtained from two populations: 15 awake subjects and 13 subjects undergoing vigilance transitions. We identified positive and negative correlations between EEG spectral power (extracted from electrodes covering different scalp regions) and fMRI BOLD connectivity in a network of 90 cortical and subcortical regions (with millimeter spatial resolution). In particular, increased alpha (8-12 Hz) and beta (15-30 Hz) power were related to decreased functional connectivity, whereas gamma (30-60 Hz) power correlated positively with BOLD connectivity between specific brain regions. These patterns were altered for subjects undergoing vigilance changes, with slower oscillations being correlated with functional connectivity increases. Dynamic BOLD functional connectivity was reflected in the fluctuations of graph theoretical indices of network structure, with changes in frontal and central alpha power correlating with average path length. Our results strongly suggest that fluctuations of BOLD functional connectivity have a neurophysiological origin. Positive correlations with gamma can be interpreted as facilitating increased BOLD connectivity needed to integrate brain regions for cognitive performance. Negative correlations with alpha suggest a temporary functional weakening of local and long-range connectivity, associated with an idling state

    Generation of Whole-Body Expressive Movement Based on Somatical Theories

    Get PDF
    An automatic choreography method to generate lifelike body movements is proposed. This method is based on somatics theories that are conventionally used to evaluate human’s psychological and developmental states by analyzing the body movement. The idea of this paper is to use the theories in the inverse way: to facilitate generation of artificial body movements that are plausible regarding evolutionary, developmental and emotional states of robots or other non-living movers. This paper reviews somatic theories and describes a strategy for implementations of automatic body movement generation. In addition, a psychological experiment is reported to verify expression ability on body movement rhythm. This method facilitates to choreographing body movement of humanoids, animal-shaped robots, and computer graphics characters in video games

    Understanding concurrent earcons: applying auditory scene analysis principles to concurrent earcon recognition

    Get PDF
    Two investigations into the identification of concurrently presented, structured sounds, called earcons were carried out. One of the experiments investigated how varying the number of concurrently presented earcons affected their identification. It was found that varying the number had a significant effect on the proportion of earcons identified. Reducing the number of concurrently presented earcons lead to a general increase in the proportion of presented earcons successfully identified. The second experiment investigated how modifying the earcons and their presentation, using techniques influenced by auditory scene analysis, affected earcon identification. It was found that both modifying the earcons such that each was presented with a unique timbre, and altering their presentation such that there was a 300 ms onset-to-onset time delay between each earcon were found to significantly increase identification. Guidelines were drawn from this work to assist future interface designers when incorporating concurrently presented earcons

    Building Generalized Neo-Riemannian Groups of Musical Transformations as Extensions

    Full text link
    Chords in musical harmony can be viewed as objects having shapes (major/minor/etc.) attached to base sets (pitch class sets). The base set and the shape set are usually given the structure of a group, more particularly a cyclic group. In a more general setting, any object could be defined by its position on a base set and by its internal shape or state. The goal of this paper is to determine the structure of simply transitive groups of transformations acting on such sets of objects with internal symmetries. In the main proposition, we state that, under simple axioms, these groups can be built as group extensions of the group associated to the base set by the group associated to the shape set, or the other way. By doing so, interesting groups of transformations are obtained, including the traditional ones such as the dihedral groups. The knowledge of the group structure and product allows to explicitly build group actions on the objects. In particular we differentiate between left and right group actions and we show how they are related to non-contextual and contextual transformations. Finally we show how group extensions can be used to build transformational models of time-spans and rhythms.Comment: 30 pages, 4 figures ; submitted to Journal of Mathematics and Music - v.4: corrected many errors, clarified some proposition
    corecore