128 research outputs found

    Automated classification of cricket pitch frames in cricket video

    Get PDF
    The automated detection of the cricket pitch in a video recording of a cricket match is a fundamental step in content-based indexing and summarization of cricket videos. In this paper, we propose visualcontent based algorithms to automate the extraction of video frames with the cricket pitch in focus. As a preprocessing step, we first select a subset of frames with a view of the cricket field, of which the cricket pitch forms a part. This filtering process reduces the search space by eliminating frames that contain a view of the audience, close-up shots of specific players, advertisements, etc. The subset of frames containing the cricket field is then subject to statistical modeling of the grayscale (brightness) histogram (SMoG). Since SMoG does not utilize color or domain-specific information such as the region in the frame where the pitch is expected to be located, we propose an alternative algorithm: component quantization based region of interest extraction (CQRE) for the extraction of pitch frames. Experimental results demonstrate that, regardless of the quality of the input, successive application of the two methods outperforms either one applied exclusively. The SMoG-CQRE combination for pitch frame classification yields an average accuracy of 98:6% in the best case (a high resolution video with good contrast) and an average accuracy of 87:9% in the worst case (a low resolution video with poor contrast). Since, the extraction of pitch frames forms the first step in analyzing the important events in a match, we also present a post-processing step, viz. , an algorithm to detect players in the extracted pitch frames

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Asymmetric Pruning for Learning Cascade Detectors

    Full text link
    Cascade classifiers are one of the most important contributions to real-time object detection. Nonetheless, there are many challenging problems arising in training cascade detectors. One common issue is that the node classifier is trained with a symmetric classifier. Having a low misclassification error rate does not guarantee an optimal node learning goal in cascade classifiers, i.e., an extremely high detection rate with a moderate false positive rate. In this work, we present a new approach to train an effective node classifier in a cascade detector. The algorithm is based on two key observations: 1) Redundant weak classifiers can be safely discarded; 2) The final detector should satisfy the asymmetric learning objective of the cascade architecture. To achieve this, we separate the classifier training into two steps: finding a pool of discriminative weak classifiers/features and training the final classifier by pruning weak classifiers which contribute little to the asymmetric learning criterion (asymmetric classifier construction). Our model reduction approach helps accelerate the learning time while achieving the pre-determined learning objective. Experimental results on both face and car data sets verify the effectiveness of the proposed algorithm. On the FDDB face data sets, our approach achieves the state-of-the-art performance, which demonstrates the advantage of our approach.Comment: 14 page

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    More playful user interfaces:interfaces that invite social and physical interaction

    Get PDF

    Data-Driven Analytics for Decision Making in Game Sports

    Get PDF
    Performance analysis and good decision making in sports is important to maximize chances of winning. Over the last years the amount and quality of data which is available for the analysis has increased enormously due to technical developments like, e.g., of sensor technologies or computer vision technology. However, the data-driven analysis of athletes and team performances is very demanding. One reason is the so called semantic gap of sports analytics. This means that the concepts of coaches are seldomly represented in the data for the analysis. Furthermore, sports in general and game sports in particular present a huge challenge due to its dynamic characteristics and the multi-factorial influences on an athlete’s performance like, e.g., the numerous interaction processes during a match. This requires different types of analyses like, e.g., qualitative analyses and thus anecdotal descriptions of performances up to quantitative analyses with which performances can be described through statistics and indicators. Additionally, coaches and analysts have to work under an enormous time pressure and decisions have to be made very quickly. In order to facilitate the demanding task of game sports analysts and coaches we present a generic approach how to conceptualize and design a Data Analytics System (DAS) for an efficient support of the decision making processes in practice. We first introduce a theoretical model and present a way how to bridge the semantic gap of sports analytics. This ensures that DASs will provide relevant information for the decision makers. Moreover, we show that DASs need to combine qualitative and quantitative analyses as well as visualizations. Additionally, we introduce different query types which are required for a holistic retrieval of sports data. We furthermore show a model for the user-centered planning and designing of the User Experience (UX) of a DAS. Having introduced the theoretical basis we present SportSense, a DAS to support decision making in game sports. Its generic architecture allows a fast adaptation to the individual characteristics and requirements of different game sports. SportSense is novel with respect to the fact that it unites raw data, event data, and video data. Furthermore, it supports different query types including an intuitive sketch-based retrieval and seamlessly combines qualitative and quantitative analyses as well as several data visualization options. Moreover, we present the two applications SportSense Football and SportSense Ice Hockey which contain sport-specific concepts and cover (high-level) tactical analyses
    • …
    corecore