1,805 research outputs found

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Models and optimisation methods for interference coordination in self-organising cellular networks

    Get PDF
    A thesis submitted for the degree of Doctor of PhilosophyWe are at that moment of network evolution when we have realised that our telecommunication systems should mimic features of human kind, e.g., the ability to understand the medium and take advantage of its changes. Looking towards the future, the mobile industry envisions the use of fully automatised cells able to self-organise all their parameters and procedures. A fully self-organised network is the one that is able to avoid human involvement and react to the fluctuations of network, traffic and channel through the automatic/autonomous nature of its functioning. Nowadays, the mobile community is far from this fully self-organised kind of network, but they are taken the first steps to achieve this target in the near future. This thesis hopes to contribute to the automatisation of cellular networks, providing models and tools to understand the behaviour of these networks, and algorithms and optimisation approaches to enhance their performance. This work focuses on the next generation of cellular networks, in more detail, in the DownLink (DL) of Orthogonal Frequency Division Multiple Access (OFDMA) based networks. Within this type of cellular system, attention is paid to interference mitigation in self-organising macrocell scenarios and femtocell deployments. Moreover, this thesis investigates the interference issues that arise when these two cell types are jointly deployed, complementing each other in what is currently known as a two-tier network. This thesis also provides new practical approaches to the inter-cell interference problem in both macro cell and femtocell OFDMA systems as well as in two-tier networks by means of the design of a novel framework and the use of mathematical optimisation. Special attention is paid to the formulation of optimisation problems and the development of well-performing solving methods (accurate and fast)

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    Hierarchical Resource Allocation Framework for Hyper-Dense Small Cell Networks

    Get PDF
    This paper considers joint power control and subchannel allocation for co-tier interference mitigation in extremely dense small cell networks, which is formulated as a combinatorial optimization problem. Since it is intractable to obtain the globally optimum assignment policy for existing techniques due to the huge computation and communication overheads in ultra-dense scenario, in this paper, we propose a hierarchical resource allocation framework to achieve a desirable solution. Speci cally, the solution is obtained by dividing the original optimization problem into four stages in partially distributed manner. First, we propose a divide-and-conquer strategy by invoking clustering technique to decompose the dense network into smaller disjoint clusters. Then, within each cluster, one of the small cell access points is elected as a cluster head to carry out intra-cluster subchannel allocation with a low-complexity algorithm. To tackle the issue of inter-cluster interference, we further develop a distributed learning-base coordination mechanism. Moreover, a local power adjustment scheme is also presented to improve the system performance. Numerical results verify the ef ciency of the proposed hierarchical scheme, and demonstrate that our solution outperforms the state-of-the-art methods, especially for hyper-dense networks

    Multi-objective resource allocation for LTE/LTE-A femtocell/HeNB networks using ant colony optimization

    Get PDF
    Existing femtocell resource allocation schemes for Long Term Evolution or LTE-Advanced femtocell networks do not jointly achieve efficient resource utilization, fairness guarantee, interference mitigation and reduced complexity in a satisfactory manner. In this paper, a multi-objective resource allocation scheme is proposed to achieve these desired features simultaneously. We first formulate three objective functions to respectively maximize resource utilization efficiency, guarantee a high degree of fairness and minimize interference. A weighted sum approach is then used to combine these objective functions to form a single multi-objective optimization problem. An ant colony optimization algorithm is employed to find the Pareto-optimal solution to this problem. Simulation results demonstrate that the proposed scheme performs jointly well in all aspects, namely resource utilization, fairness and interference mitigation. Additionally, it maintains satisfactory performance in the handover process and has a reasonably low complexity compared to the existing schemes

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies
    corecore