2,928 research outputs found

    Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography

    Get PDF
    Total variation (TV) is a powerful regularization method that has been widely applied in different imaging applications, but is difficult to apply to diffuse optical tomography (DOT) image reconstruction (inverse problem) due to complex and unstructured geometries, non-linearity of the data fitting and regularization terms, and non-differentiability of the regularization term. We develop several approaches to overcome these difficulties by: i) defining discrete differential operators for unstructured geometries using both finite element and graph representations; ii) developing an optimization algorithm based on the alternating direction method of multipliers (ADMM) for the non-differentiable and non-linear minimization problem; iii) investigating isotropic and anisotropic variants of TV regularization, and comparing their finite element- and graph-based implementations. These approaches are evaluated on experiments on simulated data and real data acquired from a tissue phantom. Our results show that both FEM and graph-based TV regularization is able to accurately reconstruct both sparse and non-sparse distributions without the over-smoothing effect of Tikhonov regularization and the over-sparsifying effect of L1_1 regularization. The graph representation was found to out-perform the FEM method for low-resolution meshes, and the FEM method was found to be more accurate for high-resolution meshes.Comment: 24 pages, 11 figures. Reviced version includes revised figures and improved clarit

    Advanced regularization and discretization methods in diffuse optical tomography

    Get PDF
    Diffuse optical tomography (DOT) is an emerging technique that utilizes light in the near infrared spectral region (650−900nm) to measure the optical properties of physiological tissue. Comparing with other imaging modalities, DOT modality is non-invasive and non-ionising. Because of the relatively lower absorption of haemoglobin, water and lipid at the near infrared spectral region, the light is able to propagate several centimeters inside of the tissue without being absolutely absorbed. The transmitted near infrared light is then combined with the image reconstruction algorithm to recover the clinical relevant information inside of the tissue. Image reconstruction in DOT is a critical problem. The accuracy and precision of diffuse optical imaging rely on the accuracy of image reconstruction. Therefore, it is of great importance to design efficient and effective algorithms for image reconstruction. Image reconstruction has two processes. The process of modelling light propagation in tissues is called the forward problem. A large number of models can be used to predict light propagation within tissues, including stochastic, analytical and numerical models. The process of recovering optical parameters inside of the tissue using the transmitted measurements is called the inverse problem. In this thesis, a number of advanced regularization and discretization methods in diffuse optical tomography are proposed and evaluated on simulated and real experimental data in reconstruction accuracy and efficiency. In DOT, the number of measurements is significantly fewer than the number of optical parameters to be recovered. Therefore the inverse problem is an ill-posed problem which would suffer from the local minimum trap. Regularization methods are necessary to alleviate the ill-posedness and help to constrain the inverse problem to achieve a plausible solution. In order to alleviate the over-smoothing effect of the popular used Tikhonov regularization, L1-norm regularization based nonlinear DOT reconstruction for spectrally constrained diffuse optical tomography is proposed. This proposed regularization can reduce crosstalk between chromophores and scatter parameters and maintain image contrast by inducing sparsity. This work investigates multiple algorithms to find the most computational efficient one for solving the proposed regularization methods. In order to recover non-sparse images where multiple activations or complex injuries happen in the brain, a more general total variation regularization is introduced. The proposed total variation is shown to be able to alleviate the over-smoothing effect of Tikhonov regularization and localize the anomaly by inducing sparsity of the gradient of the solution. A new numerical method called graph-based numerical method is introduced to model unstructured geometries of DOT objects. The new numerical method (discretization method) is compared with the widely used finite element-based (FEM) numerical method and it turns out that the graph-based numerical method is more stable and robust to changes in mesh resolution. With the advantages discovered on the graph-based numerical method, graph-based numerical method is further applied to model the light propagation inside of the tissue. In this work, two measurement systems are considered: continuous wave (CW) and frequency domain (FD). New formulations of the forward model for CW/FD DOT are proposed and the concepts of differential operators are defined under the nonlocal vector calculus. Extensive numerical experiments on simulated and realistic experimental data validated that the proposed forward models are able to accurately model the light propagation in the medium and are quantitatively comparable with both analytical and FEM forward models. In addition, it is more computational efficient and allows identical implementation for geometries in any dimension

    3D shape based reconstruction of experimental data in Diffuse Optical Tomography

    Get PDF
    Diffuse optical tomography (DOT) aims at recovering three-dimensional images of absorption and scattering parameters inside diffusive body based on small number of transmission measurements at the boundary of the body. This image reconstruction problem is known to be an ill-posed inverse problem, which requires use of prior information for successful reconstruction. We present a shape based method for DOT, where we assume a priori that the unknown body consist of disjoint subdomains with different optical properties. We utilize spherical harmonics expansion to parameterize the reconstruction problem with respect to the subdomain boundaries, and introduce a finite element (FEM) based algorithm that uses a novel 3D mesh subdivision technique to describe the mapping from spherical harmonics coefficients to the 3D absorption and scattering distributions inside a unstructured volumetric FEM mesh. We evaluate the shape based method by reconstructing experimental DOT data, from a cylindrical phantom with one inclusion with high absorption and one with high scattering. The reconstruction was monitored, and we found a 87% reduction in the Hausdorff measure between targets and reconstructed inclusions, 96% success in recovering the location of the centers of the inclusions and 87% success in average in the recovery for the volumes

    Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Full text link
    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introduction of a previously undocumented concept termed eigenspectra Multispectral Optoacoustic Tomography (eMSOT) that can effectively account for wavelength dependent light attenuation without explicit knowledge of the tissue optical properties. We validate eMSOT in more than 2000 simulations and with phantom and animal measurements. We find that eMSOT can quantitatively image tissue sO2 reaching in many occasions a better than 10-fold improved accuracy over conventional spectral optoacoustic methods. Then, we show that eMSOT can spatially resolve sO2 in muscle and tumor; revealing so far unattainable tissue physiology patterns. Last, we related eMSOT readings to cancer hypoxia and found congruence between eMSOT tumor sO2 images and tissue perfusion and hypoxia maps obtained by correlative histological analysis
    • …
    corecore