910 research outputs found

    Pliable Index Coding via Conflict-Free Colorings of Hypergraphs

    Get PDF
    In the pliable index coding (PICOD) problem, a server is to serve multiple clients, each of which possesses a unique subset of the complete message set as side information and requests a new message which it does not have. The goal of the server is to do this using as few transmissions as possible. This work presents a hypergraph coloring approach to the PICOD problem. A \textit{conflict-free coloring} of a hypergraph is known from literature as an assignment of colors to its vertices so that each edge of the graph contains one uniquely colored vertex. For a given PICOD problem represented by a hypergraph consisting of messages as vertices and request-sets as edges, we present achievable PICOD schemes using conflict-free colorings of the PICOD hypergraph. Various graph theoretic parameters arising out of such colorings (and some new variants) then give a number of upper bounds on the optimal PICOD length, which we study in this work. Our achievable schemes based on hypergraph coloring include scalar as well as vector linear PICOD schemes. For the scalar case, using the correspondence with conflict-free coloring, we show the existence of an achievable scheme which has length O(log2Γ),O(\log^2\Gamma), where Γ\Gamma refers to a parameter of the hypergraph that captures the maximum `incidence' number of other edges on any edge. This result improves upon known achievability results in PICOD literature, in some parameter regimes.Comment: 21 page

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings

    Coloring half-planes and bottomless rectangles

    Get PDF
    We prove lower and upper bounds for the chromatic number of certain hypergraphs defined by geometric regions. This problem has close relations to conflict-free colorings. One of the most interesting type of regions to consider for this problem is that of the axis-parallel rectangles. We completely solve the problem for a special case of them, for bottomless rectangles. We also give an almost complete answer for half-planes and pose several open problems. Moreover we give efficient coloring algorithms
    corecore