3,771 research outputs found

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas

    Context-Free Path Querying with Structural Representation of Result

    Full text link
    Graph data model and graph databases are very popular in various areas such as bioinformatics, semantic web, and social networks. One specific problem in the area is a path querying with constraints formulated in terms of formal grammars. The query in this approach is written as grammar, and paths querying is graph parsing with respect to given grammar. There are several solutions to it, but how to provide structural representation of query result which is practical for answer processing and debugging is still an open problem. In this paper we propose a graph parsing technique which allows one to build such representation with respect to given grammar in polynomial time and space for arbitrary context-free grammar and graph. Proposed algorithm is based on generalized LL parsing algorithm, while previous solutions are based mostly on CYK or Earley algorithms, which reduces time complexity in some cases.Comment: Evaluation extende

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    Graph Processing in Main-Memory Column Stores

    Get PDF
    Evermore, novel and traditional business applications leverage the advantages of a graph data model, such as the offered schema flexibility and an explicit representation of relationships between entities. As a consequence, companies are confronted with the challenge of storing, manipulating, and querying terabytes of graph data for enterprise-critical applications. Although these business applications operate on graph-structured data, they still require direct access to the relational data and typically rely on an RDBMS to keep a single source of truth and access. Existing solutions performing graph operations on business-critical data either use a combination of SQL and application logic or employ a graph data management system. For the first approach, relying solely on SQL results in poor execution performance caused by the functional mismatch between typical graph operations and the relational algebra. To the worse, graph algorithms expose a tremendous variety in structure and functionality caused by their often domain-specific implementations and therefore can be hardly integrated into a database management system other than with custom coding. Since the majority of these enterprise-critical applications exclusively run on relational DBMSs, employing a specialized system for storing and processing graph data is typically not sensible. Besides the maintenance overhead for keeping the systems in sync, combining graph and relational operations is hard to realize as it requires data transfer across system boundaries. A basic ingredient of graph queries and algorithms are traversal operations and are a fundamental component of any database management system that aims at storing, manipulating, and querying graph data. Well-established graph traversal algorithms are standalone implementations relying on optimized data structures. The integration of graph traversals as an operator into a database management system requires a tight integration into the existing database environment and a development of new components, such as a graph topology-aware optimizer and accompanying graph statistics, graph-specific secondary index structures to speedup traversals, and an accompanying graph query language. In this thesis, we introduce and describe GRAPHITE, a hybrid graph-relational data management system. GRAPHITE is a performance-oriented graph data management system as part of an RDBMS allowing to seamlessly combine processing of graph data with relational data in the same system. We propose a columnar storage representation for graph data to leverage the already existing and mature data management and query processing infrastructure of relational database management systems. At the core of GRAPHITE we propose an execution engine solely based on set operations and graph traversals. Our design is driven by the observation that different graph topologies expose different algorithmic requirements to the design of a graph traversal operator. We derive two graph traversal implementations targeting the most common graph topologies and demonstrate how graph-specific statistics can be leveraged to select the optimal physical traversal operator. To accelerate graph traversals, we devise a set of graph-specific, updateable secondary index structures to improve the performance of vertex neighborhood expansion. Finally, we introduce a domain-specific language with an intuitive programming model to extend graph traversals with custom application logic at runtime. We use the LLVM compiler framework to generate efficient code that tightly integrates the user-specified application logic with our highly optimized built-in graph traversal operators. Our experimental evaluation shows that GRAPHITE can outperform native graph management systems by several orders of magnitude while providing all the features of an RDBMS, such as transaction support, backup and recovery, security and user management, effectively providing a promising alternative to specialized graph management systems that lack many of these features and require expensive data replication and maintenance processes

    A Technique for Transforming Rules in Deductive Databases

    Get PDF
    In deductive databases the efficiency of recursive query evaluation is considered as an important goal. One approach to achieving this goal is to use methods that transform the original query into a new set of queries. One such method is magic sets. In the magic sets method, a query expressed by rules is transformed into a set of rules called magic rules. This paper shows how to perform this transformation by using a rule/goal graph data structure. The advantage of the technique used here is that it is very simple and clear
    corecore