12,642 research outputs found

    Semi-Supervised Sound Source Localization Based on Manifold Regularization

    Full text link
    Conventional speaker localization algorithms, based merely on the received microphone signals, are often sensitive to adverse conditions, such as: high reverberation or low signal to noise ratio (SNR). In some scenarios, e.g. in meeting rooms or cars, it can be assumed that the source position is confined to a predefined area, and the acoustic parameters of the environment are approximately fixed. Such scenarios give rise to the assumption that the acoustic samples from the region of interest have a distinct geometrical structure. In this paper, we show that the high dimensional acoustic samples indeed lie on a low dimensional manifold and can be embedded into a low dimensional space. Motivated by this result, we propose a semi-supervised source localization algorithm which recovers the inverse mapping between the acoustic samples and their corresponding locations. The idea is to use an optimization framework based on manifold regularization, that involves smoothness constraints of possible solutions with respect to the manifold. The proposed algorithm, termed Manifold Regularization for Localization (MRL), is implemented in an adaptive manner. The initialization is conducted with only few labelled samples attached with their respective source locations, and then the system is gradually adapted as new unlabelled samples (with unknown source locations) are received. Experimental results show superior localization performance when compared with a recently presented algorithm based on a manifold learning approach and with the generalized cross-correlation (GCC) algorithm as a baseline

    Chebyshev and Conjugate Gradient Filters for Graph Image Denoising

    Full text link
    In 3D image/video acquisition, different views are often captured with varying noise levels across the views. In this paper, we propose a graph-based image enhancement technique that uses a higher quality view to enhance a degraded view. A depth map is utilized as auxiliary information to match the perspectives of the two views. Our method performs graph-based filtering of the noisy image by directly computing a projection of the image to be filtered onto a lower dimensional Krylov subspace of the graph Laplacian. We discuss two graph spectral denoising methods: first using Chebyshev polynomials, and second using iterations of the conjugate gradient algorithm. Our framework generalizes previously known polynomial graph filters, and we demonstrate through numerical simulations that our proposed technique produces subjectively cleaner images with about 1-3 dB improvement in PSNR over existing polynomial graph filters.Comment: 6 pages, 6 figures, accepted to 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW

    Sampling Large Data on Graphs

    Full text link
    We consider the problem of sampling from data defined on the nodes of a weighted graph, where the edge weights capture the data correlation structure. As shown recently, using spectral graph theory one can define a cut-off frequency for the bandlimited graph signals that can be reconstructed from a given set of samples (i.e., graph nodes). In this work, we show how this cut-off frequency can be computed exactly. Using this characterization, we provide efficient algorithms for finding the subset of nodes of a given size with the largest cut-off frequency and for finding the smallest subset of nodes with a given cut-off frequency. In addition, we study the performance of random uniform sampling when compared to the centralized optimal sampling provided by the proposed algorithms.Comment: To be presented at GlobalSIP 201
    • …
    corecore