37,719 research outputs found

    Towards the Inference of Graphs on Ordered Vertexes

    Get PDF
    We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs

    Robustness, Heterogeneity and Structure Capturing for Graph Representation Learning and its Application

    Get PDF
    Graph neural networks (GNNs) are potent methods for graph representation learn- ing (GRL), which extract knowledge from complicated (graph) structured data in various real-world scenarios. However, GRL still faces many challenges. Firstly GNN-based node classification may deteriorate substantially by overlooking the pos- sibility of noisy data in graph structures, as models wrongly process the relation among nodes in the input graphs as the ground truth. Secondly, nodes and edges have different types in the real-world and it is essential to capture this heterogeneity in graph representation learning. Next, relations among nodes are not restricted to pairwise relations and it is necessary to capture the complex relations accordingly. Finally, the absence of structural encodings, such as positional information, deterio- rates the performance of GNNs. This thesis proposes novel methods to address the aforementioned problems: 1. Bayesian Graph Attention Network (BGAT): Developed for situations with scarce data, this method addresses the influence of spurious edges. Incor- porating Bayesian principles into the graph attention mechanism enhances robustness, leading to competitive performance against benchmarks (Chapter 3). 2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT): By enhancing a cutting-edge self-supervised heterogeneous graph neural net- work model (HGAT) with neighbour contrastive learning, this method ad- dresses heterogeneity and uncertainty simultaneously. Extra attention to edge relations in heterogeneous graphs also aids in subsequent classification tasks (Chapter 4). 3. A novel ensemble learning framework is introduced for predicting stock price movements. It adeptly captures both group-level and pairwise relations, lead- ing to notable advancements over the existing state-of-the-art. The integration of hypergraph and graph models, coupled with the utilisation of auxiliary data via GNNs before recurrent neural network (RNN), provides a deeper under- standing of long-term dependencies between similar entities in multivariate time series analysis (Chapter 5). 4. A novel framework for graph structure learning is introduced, segmenting graphs into distinct patches. By harnessing the capabilities of transformers and integrating other position encoding techniques, this approach robustly capture intricate structural information within a graph. This results in a more comprehensive understanding of its underlying patterns (Chapter 6)

    Substructure Discovery Using Minimum Description Length and Background Knowledge

    Full text link
    The ability to identify interesting and repetitive substructures is an essential component to discovering knowledge in structural data. We describe a new version of our SUBDUE substructure discovery system based on the minimum description length principle. The SUBDUE system discovers substructures that compress the original data and represent structural concepts in the data. By replacing previously-discovered substructures in the data, multiple passes of SUBDUE produce a hierarchical description of the structural regularities in the data. SUBDUE uses a computationally-bounded inexact graph match that identifies similar, but not identical, instances of a substructure and finds an approximate measure of closeness of two substructures when under computational constraints. In addition to the minimum description length principle, other background knowledge can be used by SUBDUE to guide the search towards more appropriate substructures. Experiments in a variety of domains demonstrate SUBDUE's ability to find substructures capable of compressing the original data and to discover structural concepts important to the domain. Description of Online Appendix: This is a compressed tar file containing the SUBDUE discovery system, written in C. The program accepts as input databases represented in graph form, and will output discovered substructures with their corresponding value.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl
    • …
    corecore