3,255 research outputs found

    Characterization and Inference of Graph Diffusion Processes from Observations of Stationary Signals

    Full text link
    Many tools from the field of graph signal processing exploit knowledge of the underlying graph's structure (e.g., as encoded in the Laplacian matrix) to process signals on the graph. Therefore, in the case when no graph is available, graph signal processing tools cannot be used anymore. Researchers have proposed approaches to infer a graph topology from observations of signals on its nodes. Since the problem is ill-posed, these approaches make assumptions, such as smoothness of the signals on the graph, or sparsity priors. In this paper, we propose a characterization of the space of valid graphs, in the sense that they can explain stationary signals. To simplify the exposition in this paper, we focus here on the case where signals were i.i.d. at some point back in time and were observed after diffusion on a graph. We show that the set of graphs verifying this assumption has a strong connection with the eigenvectors of the covariance matrix, and forms a convex set. Along with a theoretical study in which these eigenvectors are assumed to be known, we consider the practical case when the observations are noisy, and experimentally observe how fast the set of valid graphs converges to the set obtained when the exact eigenvectors are known, as the number of observations grows. To illustrate how this characterization can be used for graph recovery, we present two methods for selecting a particular point in this set under chosen criteria, namely graph simplicity and sparsity. Additionally, we introduce a measure to evaluate how much a graph is adapted to signals under a stationarity assumption. Finally, we evaluate how state-of-the-art methods relate to this framework through experiments on a dataset of temperatures.Comment: Submitted to IEEE Transactions on Signal and Information Processing over Network

    Geometry-Aware Neighborhood Search for Learning Local Models for Image Reconstruction

    Get PDF
    Local learning of sparse image models has proven to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. The first algorithm, called Adaptive Geometry-driven Nearest Neighbor search (AGNN), is an adaptive scheme which can be seen as an out-of-sample extension of the replicator graph clustering method for local model learning. The second method, called Geometry-driven Overlapping Clusters (GOC), is a less complex nonadaptive alternative for training subset selection. The proposed AGNN and GOC methods are evaluated in image super-resolution, deblurring and denoising applications and shown to outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings.Comment: 15 pages, 10 figures and 5 table

    Robust Network Topology Inference and Processing of Graph Signals

    Full text link
    The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder estimation performance. While many GSP works have looked at the presence of perturbations in the signals, much fewer have looked at the presence of perturbations in the graph, and almost none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate the influence of perturbations in the graph signals, the graph support, and both. To do so, we consider different types of perturbations, evaluate their disruptive impact on fundamental GSP tasks, and design robust algorithms to address them.Comment: Dissertatio
    • …
    corecore