18 research outputs found

    A linear optimization technique for graph pebbling

    Full text link
    Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is \Pi_2^P-complete. In this paper we develop a tool, called the Weight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply the Weight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling

    A linear optimization technique for graph pebbling

    Get PDF
    Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling

    Zero-sum problems for abelian p-groups and covers of the integers by residue classes

    Full text link
    Zero-sum problems for abelian groups and covers of the integers by residue classes, are two different active topics initiated by P. Erdos more than 40 years ago and investigated by many researchers separately since then. In an earlier announcement [Electron. Res. Announc. Amer. Math. Soc. 9(2003), 51-60], the author claimed some surprising connections among these seemingly unrelated fascinating areas. In this paper we establish further connections between zero-sum problems for abelian p-groups and covers of the integers. For example, we extend the famous Erdos-Ginzburg-Ziv theorem in the following way: If {a_s(mod n_s)}_{s=1}^k covers each integer either exactly 2q-1 times or exactly 2q times where q is a prime power, then for any c_1,...,c_k in Z/qZ there exists a subset I of {1,...,k} such that sum_{s in I}1/n_s=q and sum_{s in I}c_s=0. Our main theorem in this paper unifies many results in the two realms and also implies an extension of the Alon-Friedland-Kalai result on regular subgraphs

    IST Austria Thesis

    Get PDF
    A search problem lies in the complexity class FNP if a solution to the given instance of the problem can be verified efficiently. The complexity class TFNP consists of all search problems in FNP that are total in the sense that a solution is guaranteed to exist. TFNP contains a host of interesting problems from fields such as algorithmic game theory, computational topology, number theory and combinatorics. Since TFNP is a semantic class, it is unlikely to have a complete problem. Instead, one studies its syntactic subclasses which are defined based on the combinatorial principle used to argue totality. Of particular interest is the subclass PPAD, which contains important problems like computing Nash equilibrium for bimatrix games and computational counterparts of several fixed-point theorems as complete. In the thesis, we undertake the study of averagecase hardness of TFNP, and in particular its subclass PPAD. Almost nothing was known about average-case hardness of PPAD before a series of recent results showed how to achieve it using a cryptographic primitive called program obfuscation. However, it is currently not known how to construct program obfuscation from standard cryptographic assumptions. Therefore, it is desirable to relax the assumption under which average-case hardness of PPAD can be shown. In the thesis we take a step in this direction. First, we show that assuming the (average-case) hardness of a numbertheoretic problem related to factoring of integers, which we call Iterated-Squaring, PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive protocol into a non-interactive one. As a corollary, we obtain average-case hardness for PPAD in the random-oracle model assuming the worst-case hardness of #SAT. Moreover, the above results can all be strengthened to obtain average-case hardness for the class CLS ⊆ PPAD. Our main technical contribution is constructing incrementally-verifiable procedures for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean that every intermediate state of the computation includes a proof of its correctness, and the proof can be updated and verified in polynomial time. Previous constructions of such procedures relied on strong, non-standard assumptions. Instead, we introduce a technique called recursive proof-merging to obtain the same from weaker assumptions

    Unique End of Potential Line

    Get PDF
    This paper studies the complexity of problems in PPAD ∩\cap PLS that have unique solutions. Three well-known examples of such problems are the problem of finding a fixpoint of a contraction map, finding the unique sink of a Unique Sink Orientation (USO), and solving the P-matrix Linear Complementarity Problem (P-LCP). Each of these are promise-problems, and when the promise holds, they always possess unique solutions. We define the complexity class UEOPL to capture problems of this type. We first define a class that we call EOPL, which consists of all problems that can be reduced to End-of-Potential-Line. This problem merges the canonical PPAD-complete problem End-of-Line, with the canonical PLS-complete problem Sink-of-Dag, and so EOPL captures problems that can be solved by a line-following algorithm that also simultaneously decreases a potential function. Promise-UEOPL is a promise-subclass of EOPL in which the line in the End-of-Potential-Line instance is guaranteed to be unique via a promise. We turn this into a non-promise class UEOPL, by adding an extra solution type to EOPL that captures any pair of points that are provably on two different lines. We show that UEOPL ⊆\subseteq EOPL ⊆\subseteq CLS, and that all of our motivating problems are contained in UEOPL: specifically USO, P-LCP, and finding a fixpoint of a Piecewise-Linear Contraction under an ℓp\ell_p-norm all lie in UEOPL. Our results also imply that parity games, mean-payoff games, discounted games, and simple-stochastic games lie in UEOPL. All of our containment results are proved via a reduction to a problem that we call One-Permutation Discrete Contraction (OPDC). This problem is motivated by a discretized version of contraction, but it is also closely related to the USO problem. We show that OPDC lies in UEOPL, and we are also able to show that OPDC is UEOPL-complete.Comment: This paper substantially revises and extends the work described in our previous preprint "End of Potential Line'' (arXiv:1804.03450). The abstract has been shortened to meet the arXiv character limi

    Unique End of Potential Line

    Get PDF
    This paper studies the complexity of problems in PPAD ∩\cap PLS that have unique solutions. Three well-known examples of such problems are the problem of finding a fixpoint of a contraction map, finding the unique sink of a Unique Sink Orientation (USO), and solving the P-matrix Linear Complementarity Problem (P-LCP). Each of these are promise-problems, and when the promise holds, they always possess unique solutions. We define the complexity class UEOPL to capture problems of this type. We first define a class that we call EOPL, which consists of all problems that can be reduced to End-of-Potential-Line. This problem merges the canonical PPAD-complete problem End-of-Line, with the canonical PLS-complete problem Sink-of-Dag, and so EOPL captures problems that can be solved by a line-following algorithm that also simultaneously decreases a potential function. Promise-UEOPL is a promise-subclass of EOPL in which the line in the End-of-Potential-Line instance is guaranteed to be unique via a promise. We turn this into a non-promise class UEOPL, by adding an extra solution type to EOPL that captures any pair of points that are provably on two different lines. We show that UEOPL ⊆\subseteq EOPL ⊆\subseteq CLS, and that all of our motivating problems are contained in UEOPL: specifically USO, P-LCP, and finding a fixpoint of a Piecewise-Linear Contraction under an ℓp\ell_p-norm all lie in UEOPL. Our results also imply that parity games, mean-payoff games, discounted games, and simple-stochastic games lie in UEOPL. All of our containment results are proved via a reduction to a problem that we call One-Permutation Discrete Contraction (OPDC). This problem is motivated by a discretized version of contraction, but it is also closely related to the USO problem. We show that OPDC lies in UEOPL, and we are also able to show that OPDC is UEOPL-complete
    corecore