21,552 research outputs found

    Structural Data Recognition with Graph Model Boosting

    Get PDF
    This paper presents a novel method for structural data recognition using a large number of graph models. In general, prevalent methods for structural data recognition have two shortcomings: 1) Only a single model is used to capture structural variation. 2) Naive recognition methods are used, such as the nearest neighbor method. In this paper, we propose strengthening the recognition performance of these models as well as their ability to capture structural variation. The proposed method constructs a large number of graph models and trains decision trees using the models. This paper makes two main contributions. The first is a novel graph model that can quickly perform calculations, which allows us to construct several models in a feasible amount of time. The second contribution is a novel approach to structural data recognition: graph model boosting. Comprehensive structural variations can be captured with a large number of graph models constructed in a boosting framework, and a sophisticated classifier can be formed by aggregating the decision trees. Consequently, we can carry out structural data recognition with powerful recognition capability in the face of comprehensive structural variation. The experiments shows that the proposed method achieves impressive results and outperforms existing methods on datasets of IAM graph database repository.Comment: 8 page

    Structured Learning of Tree Potentials in CRF for Image Segmentation

    Full text link
    We propose a new approach to image segmentation, which exploits the advantages of both conditional random fields (CRFs) and decision trees. In the literature, the potential functions of CRFs are mostly defined as a linear combination of some pre-defined parametric models, and then methods like structured support vector machines (SSVMs) are applied to learn those linear coefficients. We instead formulate the unary and pairwise potentials as nonparametric forests---ensembles of decision trees, and learn the ensemble parameters and the trees in a unified optimization problem within the large-margin framework. In this fashion, we easily achieve nonlinear learning of potential functions on both unary and pairwise terms in CRFs. Moreover, we learn class-wise decision trees for each object that appears in the image. Due to the rich structure and flexibility of decision trees, our approach is powerful in modelling complex data likelihoods and label relationships. The resulting optimization problem is very challenging because it can have exponentially many variables and constraints. We show that this challenging optimization can be efficiently solved by combining a modified column generation and cutting-planes techniques. Experimental results on both binary (Graz-02, Weizmann horse, Oxford flower) and multi-class (MSRC-21, PASCAL VOC 2012) segmentation datasets demonstrate the power of the learned nonlinear nonparametric potentials.Comment: 10 pages. Appearing in IEEE Transactions on Neural Networks and Learning System

    Deep Graph Laplacian Regularization for Robust Denoising of Real Images

    Full text link
    Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin
    • …
    corecore