380 research outputs found

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included

    Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    Get PDF
    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators

    Contribution of non‐orthogonal multiple access signalling to practical multibeam satellite deployments

    Get PDF
    This work explores the contribution of non-orthogonal multiple access (NOMA) signalling to improve some relevant metrics of a multibeam satellite downlink. Users are paired to exploit signal-to-noise ratio (SNR) imbalances coming from the coexistence of different types of terminals, and they can be flexibly allocated to the beams, thus relaxing the cell boundaries of the satellite footprint. Different practical considerations are accommodated, such as a spatially non-uniform traffic demand, non-linear amplification effects and the use of the DVB-S2X air interface. Results show how higher traffic volumes can be channelized by the satellite, thanks to the additional bit rates which are generated for the strong users under the superposition of signals, with carefully designed power levels for DVB-S2X modulation and coding schemes in the presence of non-linear impairments.Agencia Estatal de Investigación | Ref. PID2019-105717RB-C21Agencia Estatal de Investigación | Ref. PDC2021-120959-C22Xunta de GaliciaUniversidade de Vigo/CISU

    Energy-efficient link resource allocation in the multibeam satellite downlink under QoS constraints

    Get PDF
    The paper proposes a novel adaptive coding and modulation scheme, based on DVB-S2X standard, which ensure very high spectral efficiency, and an energy-efficient power control (PC) algorithm to optimize the goodput over a multibeam satellite downlink. Results show performance improvement whenand compared withto conventional PC approaches based on rate satisfaction

    On-board processing for future satellite communications systems: Satellite-Routed FDMA

    Get PDF
    A frequency division multiple access (FDMA) 30/20 GHz satellite communications architecture without on-board baseband processing is investigated. Conceptual system designs are suggested for domestic traffic models totaling 4 Gb/s of customer premises service (CPS) traffic and 6 Gb/s of trunking traffic. Emphasis is given to the CPS portion of the system which includes thousands of earth terminals with digital traffic ranging from a single 64 kb/s voice channel to hundreds of channels of voice, data, and video with an aggregate data rate of 33 Mb/s. A unique regional design concept that effectively smooths the non-uniform traffic distribution and greatly simplifies the satellite design is employed. The satellite antenna system forms thirty-two 0.33 deg beam on both the uplinks and the downlinks in one design. In another design matched to a traffic model with more dispersed users, there are twenty-four 0.33 deg beams and twenty-one 0.7 deg beams. Detailed system design techniques show that a single satellite producing approximately 5 kW of dc power is capable of handling at least 75% of the postulated traffic. A detailed cost model of the ground segment and estimated system costs based on current information from manufacturers are presented

    Demand-based optimization for adaptive multi-beam satellite communication systems

    Get PDF
    Satellite operators use multiple spot beams of high throughput satellite systems to provide internet services to broadband users. However, in recent years, new mobile broadband users with diverse demand requisites are growing, and satellite operators are obliged to provide services agreed in the Service Level Agreements(SLA) to remote rural locations, mid-air aeroplanes and mid-ocean ships. Furthermore, the expected demand is spatio-temporal which varies along the geographical location of the mobile users with time and hence, creating more dynamic, non uniformly distributed, and time sensitive demand profiles. However, the current satellite systems are only designed to perform similarly irrespective of the changes in demand profiles. Hence, a practical approach to meet such heterogeneous demand is to design adaptive systems by exploiting the advancements in recently developed technologies such as precoding, active antenna array, digital beamforming networks, digital transparent payload and onboard signal processing. Accordingly, in this work, we investigate and develop advanced demand-based resource optimization modules that fit future payload capabilities and satisfy the satellite operators’ interests. Furthermore, instead of boosting the satellite throughput (capacity maximization), the goal is to optimize the available resources such that the satellite offered capacity on the ground continuously matches the geographic distribution of the traffic demand and follows its variations in time. However, we can introduce adaptability at multiple levels of the transmission chain of the satellite system, either with long term flexibility (optimization over frequency, time, power, beam pattern and footprint) or short term flexibility (optimization over user scheduling). These techniques can be optimized as either standalone or in parallel or even jointly for maximum demand satisfaction. However, in the scope of this thesis, we have designed real time optimizations only for some of the radio resource schemes. Firstly, we explore beam densification, where by increasing the number of beams, we improve the antenna gain values at the high demand hot-spot regions. However, such increase in the number of beams also increase the interbeam interference and badly affects SINR performance. Hence, in the first part of Chapter 2 of this thesis, we focus on finding an optimal number of beams for given high demand hot-spot region of a demand distribution profile. Also, steering the beams towards high demand regions, further increase the demand satisfaction. However, the positioning of the beams need to be carefully planned. On one hand, closely placed beams result in poor SINR performance. On the other hand, beams that are placed far away will have poor antenna gain values for the users away from the beam centers. Hence, in the second part of Chapter 2, we focus on finding optimized beam positions for maximum demand satisfaction in high demand hot-spot regions. Also, we propose a dynamic frequency-color coding strategy for efficient spectrum and interference management in demand-driven adaptive systems. Another solution is the proposed so-called Adaptive Multi-beam Pattern and Footprint (AMPF) design, where we fix the number of beams and based on the demand profile, we configure adaptive beam shapes and sizes along with their positions. Such an approach shall distribute the total demand across all the beams more evenly avoiding overloaded or underused beams. Such optimization was attempted in Chapter 3 using cluster analysis. Furthermore, demand satisfaction at both beam and user level was achieved by carefully performing demand driven user scheduling. On one hand, scheduling most orthogonal users at the same time may yield better capacity but may not provide demand satisfaction. This is majorly because users with high demand need to be scheduled more often in comparison to users with low demand irrespective of channel orthogonality. On the other hand, scheduling users with high demand which are least orthogonal, create strong interbeam interference and affect precoding performance. Accordingly, two demand driven scheduling algorithms (Weighted Semi-orthogonal scheduling (WSOS) and Interference-aware demand-based user scheduling) are discussed in Chapter 4. Lastly, in Chapter 5, we verified the impact of parallel implementation of two different demand based optimization techniques such as AMPF design and WSOS user scheduling. Evidently, numerical results presented throughout this thesis validate the effectiveness of the proposed demand based optimization techniques in terms of demand matching performance compared to the conventional non-demand based approaches

    Evaluation of multi-user multiple-input multiple-output digital beamforming algorithms in B5G/6G low Earth orbit satellite systems

    Get PDF
    Satellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever-increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co-channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed-form solution, we propose a beamforming algorithm based on maximizing the users' signal-to-leakage-and-noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi-beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per-user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to-leakage-plus-noise ratio beamforming technique is able to outperform both minimum mean square error and multi-beam schemes in the presented satellite communication scenario

    Communication satellite technology: State of the art and development opportunities

    Get PDF
    Opportunities in communication satellite technology are identified and defined. Factors that tend to limit the ready availability of satellite communication to an increasingly wide group of users are evaluated. Current primary limitations on this wide utilization are the availability of frequency and/or synchronous equatorial satellite positions and the cost of individual user Earth terminals. The former could be ameliorated through the reuse of frequencies, the use of higher frequency bands, and the reduction of antenna side lobes. The latter limitation requires innovative hardware, design, careful system design, and large scale production
    corecore