6,217 research outputs found

    Spectral Clustering with Imbalanced Data

    Full text link
    Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by adaptively modulating node degrees on a fixed node set, to yield a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach. We demonstrate the superiority of our method through unsupervised and semi-supervised experiments on synthetic and real data sets.Comment: 24 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1302.513

    Clustering and Community Detection with Imbalanced Clusters

    Full text link
    Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced cluster sizes. Our approach parameterizes a family of graphs by adaptively modulating node degrees on a fixed node set, yielding a set of parameter dependent cuts reflecting varying levels of imbalance. The solution to our problem is then obtained by optimizing over these parameters. We present rigorous limit cut analysis results to justify our approach and demonstrate the superiority of our method through experiments on synthetic and real datasets for data clustering, semi-supervised learning and community detection.Comment: Extended version of arXiv:1309.2303 with new applications. Accepted to IEEE TSIP

    How to Round Subspaces: A New Spectral Clustering Algorithm

    Full text link
    A basic problem in spectral clustering is the following. If a solution obtained from the spectral relaxation is close to an integral solution, is it possible to find this integral solution even though they might be in completely different basis? In this paper, we propose a new spectral clustering algorithm. It can recover a kk-partition such that the subspace corresponding to the span of its indicator vectors is O(opt)O(\sqrt{opt}) close to the original subspace in spectral norm with optopt being the minimum possible (opt1opt \le 1 always). Moreover our algorithm does not impose any restriction on the cluster sizes. Previously, no algorithm was known which could find a kk-partition closer than o(kopt)o(k \cdot opt). We present two applications for our algorithm. First one finds a disjoint union of bounded degree expanders which approximate a given graph in spectral norm. The second one is for approximating the sparsest kk-partition in a graph where each cluster have expansion at most ϕk\phi_k provided ϕkO(λk+1)\phi_k \le O(\lambda_{k+1}) where λk+1\lambda_{k+1} is the (k+1)st(k+1)^{st} eigenvalue of Laplacian matrix. This significantly improves upon the previous algorithms, which required ϕkO(λk+1/k)\phi_k \le O(\lambda_{k+1}/k).Comment: Appeared in SODA 201

    Preconditioned Spectral Clustering for Stochastic Block Partition Streaming Graph Challenge

    Full text link
    Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is demonstrated to efficiently solve eigenvalue problems for graph Laplacians that appear in spectral clustering. For static graph partitioning, 10-20 iterations of LOBPCG without preconditioning result in ~10x error reduction, enough to achieve 100% correctness for all Challenge datasets with known truth partitions, e.g., for graphs with 5K/.1M (50K/1M) Vertices/Edges in 2 (7) seconds, compared to over 5,000 (30,000) seconds needed by the baseline Python code. Our Python code 100% correctly determines 98 (160) clusters from the Challenge static graphs with 0.5M (2M) vertices in 270 (1,700) seconds using 10GB (50GB) of memory. Our single-precision MATLAB code calculates the same clusters at half time and memory. For streaming graph partitioning, LOBPCG is initiated with approximate eigenvectors of the graph Laplacian already computed for the previous graph, in many cases reducing 2-3 times the number of required LOBPCG iterations, compared to the static case. Our spectral clustering is generic, i.e. assuming nothing specific of the block model or streaming, used to generate the graphs for the Challenge, in contrast to the base code. Nevertheless, in 10-stage streaming comparison with the base code for the 5K graph, the quality of our clusters is similar or better starting at stage 4 (7) for emerging edging (snowballing) streaming, while the computations are over 100-1000 faster.Comment: 6 pages. To appear in Proceedings of the 2017 IEEE High Performance Extreme Computing Conference. Student Innovation Award Streaming Graph Challenge: Stochastic Block Partition, see http://graphchallenge.mit.edu/champion

    Covariate-assisted spectral clustering

    Full text link
    Biological and social systems consist of myriad interacting units. The interactions can be represented in the form of a graph or network. Measurements of these graphs can reveal the underlying structure of these interactions, which provides insight into the systems that generated the graphs. Moreover, in applications such as connectomics, social networks, and genomics, graph data are accompanied by contextualizing measures on each node. We utilize these node covariates to help uncover latent communities in a graph, using a modification of spectral clustering. Statistical guarantees are provided under a joint mixture model that we call the node-contextualized stochastic blockmodel, including a bound on the mis-clustering rate. The bound is used to derive conditions for achieving perfect clustering. For most simulated cases, covariate-assisted spectral clustering yields results superior to regularized spectral clustering without node covariates and to an adaptation of canonical correlation analysis. We apply our clustering method to large brain graphs derived from diffusion MRI data, using the node locations or neurological region membership as covariates. In both cases, covariate-assisted spectral clustering yields clusters that are easier to interpret neurologically.Comment: 28 pages, 4 figures, includes substantial changes to theoretical result
    corecore