8,305 research outputs found

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    Enriched Lawvere Theories for Operational Semantics

    Full text link
    Enriched Lawvere theories are a generalization of Lawvere theories that allow us to describe the operational semantics of formal systems. For example, a graph enriched Lawvere theory describes structures that have a graph of operations of each arity, where the vertices are operations and the edges are rewrites between operations. Enriched theories can be used to equip systems with operational semantics, and maps between enriching categories can serve to translate between different forms of operational and denotational semantics. The Grothendieck construction lets us study all models of all enriched theories in all contexts in a single category. We illustrate these ideas with the SKI-combinator calculus, a variable-free version of the lambda calculus.Comment: In Proceedings ACT 2019, arXiv:2009.0633

    Lambda theories of effective lambda models

    Get PDF
    A longstanding open problem is whether there exists a non-syntactical model of untyped lambda-calculus whose theory is exactly the least equational lambda-theory (=Lb). In this paper we make use of the Visser topology for investigating the more general question of whether the equational (resp. order) theory of a non syntactical model M, say Eq(M) (resp. Ord(M)) can be recursively enumerable (= r.e. below). We conjecture that no such model exists and prove the conjecture for several large classes of models. In particular we introduce a notion of effective lambda-model and show that for all effective models M, Eq(M) is different from Lb, and Ord(M) is not r.e. If moreover M belongs to the stable or strongly stable semantics, then Eq(M) is not r.e. Concerning Scott's continuous semantics we explore the class of (all) graph models, show that it satisfies Lowenheim Skolem theorem, that there exists a minimum order/equational graph theory, and that both are the order/equ theories of an effective graph model. We deduce that no graph model can have an r.e. order theory, and also show that for some large subclasses, the same is true for Eq(M).Comment: 15 pages, accepted CSL'0

    The Dynamic Geometry of Interaction Machine: A Call-by-Need Graph Rewriter

    Get PDF
    Girard's Geometry of Interaction (GoI), a semantics designed for linear logic proofs, has been also successfully applied to programming language semantics. One way is to use abstract machines that pass a token on a fixed graph along a path indicated by the GoI. These token-passing abstract machines are space efficient, because they handle duplicated computation by repeating the same moves of a token on the fixed graph. Although they can be adapted to obtain sound models with regard to the equational theories of various evaluation strategies for the lambda calculus, it can be at the expense of significant time costs. In this paper we show a token-passing abstract machine that can implement evaluation strategies for the lambda calculus, with certified time efficiency. Our abstract machine, called the Dynamic GoI Machine (DGoIM), rewrites the graph to avoid replicating computation, using the token to find the redexes. The flexibility of interleaving token transitions and graph rewriting allows the DGoIM to balance the trade-off of space and time costs. This paper shows that the DGoIM can implement call-by-need evaluation for the lambda calculus by using a strategy of interleaving token passing with as much graph rewriting as possible. Our quantitative analysis confirms that the DGoIM with this strategy of interleaving the two kinds of possible operations on graphs can be classified as "efficient" following Accattoli's taxonomy of abstract machines
    corecore